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ABSTRACT

Earthworms and their interactions with microorganisms offer beneficial effects 

that can improve organic matter decomposition, enhance nutrient availability, 

and suppress pathogens in the soil. In this study, microorganisms from the gut 

of Eudrilus eugeniae (Kinberg, 1867), commonly known as African nightcrawler or 

ANC, were isolated through pour plate method and screened for their activities 

using assays to confirm nitrogen fixation, phosphate solubilization, polyethylene 

utilization, and antagonistic potential. The identifications of eight bacterial and 

six fungal isolates were confirmed based on nearest phylogenetic affiliations. 

Fungal isolates Aspergillus aculeatus, Aspergillus japonicus, Fomitopsis sp., and 

Penicillium citrinum exhibited antagonistic activity against Bacillus subtilis, 

Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Bacterial 

isolates Aeromonas caviae and Bacillus xiamenensis utilized low- and high-density 

polyethylene as carbon sources. These isolates were also found to have high 

phosphate solubilization index (2.55-2.67) with high amount of phosphate 

solubilized (A. caviae: 0.799; B. xiamenensis: 0.778) at decreasing pH (i.e. pH 7.0 

to 4.0). A. caviae and B. xiamenensis also showed nitrogen-fixing activity which is 

supported by the detection of nifH gene (>300 bp) and high nitrogen content (50 

kg/ha NO3-N) of vermicasts. The activities of these gut-associated bacteria and 

fungi must be further explored to optimize the use of ANC’s casts and compost 

for agricultural, medical, and other applications. 
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INTRODUCTION 

Earthworms are considered “ecosystem engineers” owing to their role in nutrient 
cycling through vermicomposting (Lavelle and Martin 1992; Chapuis-Lardy et al. 
1998). Vermicomposting facilitates degradation of a wide variety of materials and 
produces products for agricultural applications. For example, compost products of 
earthworm species Eisenia fetida (Savigny, 1826), Eudrilus eugeniae (Kinberg, 1867), 
Lampito mauritii Kinberg, 1867, Perionyx ceylanensis Michaelsen, 1904, and Perionyx 
excavatus Perrier, 1872 were proven to improve the growth and yield of bell pepper, 
cucumber, marigold, strawberry, tomato, and ornamental plants (Atiyeh et al. 2000; 
Azarmi et al. 2008; Singh et al. 2008; Karmegam and Daniel 2009; Zhao et al. 2017; 
Rekha et al. 2018). 

The contribution of microbial interactions of earthworms in nutrient cycling 
through mineralization and organic matter decomposition has been reported 
(Lavelle and Martin 1992; Chapuis-Lardy et al. 1998; Bohlen et al. 2004; Aira et al. 
2009). The presence of Acinetobacter spp., Azotobacter spp., Bacillus spp., Clostridium 
spp., Halobacterium spp., Micrococcus lylae, Pseudomonas aeruginosa, Spirocheata 
spp., Staphylococcus aureus, and Streptococcus mutans in the gut and casts of 
Libyodrilus violaceus Beddard, 1891 was associated with high rate of organic matter 
decomposition (Idowu et al. 2006). Bacteria capable of phosphate solubilization 
were detected in the gut of Allolobophora chlorotica, Aporrectodea longa, and E. fetida 
(Maheswari and Sudha 2013). Acinetobacter baumanni, Lactobacillus pantheries, 
Virigibacillius chiquenigi, and several species of Bacillus were isolated from epigeic 
E. fetida that was proven to efficiently degrade and convert paper cups into 
vermicompost (Arumugam et al. 2014). Paper, garden, and kitchen wastes were also 
degraded through the action of E. fetida (Wani et al. 2013; Amita and Joseph 2017). 

The antagonistic potential of microorganisms associated with earthworms was 
also studied. The casts of Pheretima posthuma were found to harbor actinomycetes 
with antagonistic activity against human bacterial pathogens including B. subtilis, 
Escherichia coli, P. aeruginosa, and S. aureus (Kumar et al. 2012). Other studies on 
antagonistic activity involved testing extracts of earthworms against bacteria. 
The growth of E. coli, Klebsiella pneumoniae, Staphylococcus epidermidis, Proteus 
vulgaris, P. mirabilis, P. aeruginosa, and S. aureus was inhibited by L. mauritii and  
P. excavatus powder (Prakash and Gunasekaran 2011). The antagonistic activity 
of L. mauritii extracts against Aeromonas hydrophila, B. subtilis, Salmonella typhi,  
S. aureus, and Vibrio parahaemolyticus was also confirmed (Bhorgin and Uma 2014; 
Kathireswari et al. 2014). The extracts of Lumbricus rubellus Hoffmeister, 1843 
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were effective against the human pathogen Porphyromonas gingivalis (Dharmawati 
et al. 2019), while Wegeneriona sp. extracts were effective against Serratia 
marcescens (Dhanam et al. 2016). The extracts of P. excavatus and P. posthuma showed 
inhibitory activity against fish pathogens including A. hydrophila, Enterobacter 
aerogenes, E. coli, Micrococcus luteus, P. aeruginosa, Pseudomonas fluorescens, and  
S. aureus (Bansal et al. 2015). 

Diverse bacteria and fungi were found to inhabit the gut of ANC (Bamidele et al. 
2014) and other earthworm species such as Aporrectodea caliginosa (Savigny, 1826), 
Eisenia andrei Bouché, 1972, E. fetida, L. violaceus, Lumbricus terrestris Linnaeus, 1758, 
and P. excavatus (Toyota and Kimura 2000; Pižl and Nováková 2003; Idowu et al. 
2006; Chowdhury et al. 2007; Byzov et al. 2009; Owa et al. 2013; Bamidele et al. 
2014). The gut environment, characterized by different pH levels, moisture content, 
oxygen concentrations, and nutrient levels, affects the composition and metabolic 
activities of gut-associated microorganisms (Karsten and Drake 1995; Horn et 
al. 2003; Idowu et al. 2006). In turn, these microorganisms contribute to primary 
production, microclimate regulation, pollution remediation, and nutrient cycling of 
earthworms in the soil environment (Blouin et al. 2013). 

ANC is an epigeic species that is commonly used in vermicomposting. The species 
is popular due to its fast growth (40-49 days to reach sexual maturity), voracious 
feeding, consumption of high volume of wastes, rapid decomposition of organic 
matter, and tolerance to adverse environmental conditions (Viljoen and Reinecke 
1989; Reinecke et al. 1992; Dominguez et al. 2001; Monebi and Ugwumba 2013). 
In the Philippines, ANC was first introduced in the 1980s, and is currently being 
promoted by the Department of Agriculture for vermicomposting as the species 
prefers temperature ranging from 25 °C to 30 °C that is common in the tropics 
(Dominguez et al. 2001; Blakemore 2015). Composts processed by ANC are being 
used as fertilizer, such as for lowland and upland rice (Guerrero and Guerrero 
2014; Blakemore 2015) and as feed, such as for Nile tilapia (Oreochromis niloticus) 
(Guerrero and Guerrero 2014). 

Despite the prevalence and high rate of utilization of ANC for vermicomposting, 
there is generally lack of information on the composition, diversity, and activities of 
microorganisms associated with this species in the Philippines. This study aimed to 
isolate bacteria and fungi from the gut of ANC, and screen these microorganisms for 
nitrogen fixation, phosphate solubilization, polyethylene utilization, and antagonistic 
potential. The findings of this study may contribute to better understanding of the 
utilization of ANC for vermicomposting in relation to the beneficial activities of 
their gut-associated bacteria and fungi.
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MATERIALS AND METHODS

Collection of Earthworm Samples

Earthworms, identified as E. eugeniae (African nightcrawler) following the description 
of Blakemore (2015) (Nonillon Aspe, personal communication), were collected along 
with their soil substrate from the vermicompost facility of Task Force Solid Waste 
Management (TFSWM), University of the Philippines Diliman (UPD), Quezon City, 
Philippines. Twenty adult earthworms, characterized by the presence of clitellum, 
were individually handpicked and placed in a container (17.3 cm x 11.8 cm x 3.8 
cm) made of polypropylene (Owa et al. 2013). Soil samples were collected from the 
uppermost 10-40 cm of the vermicompost bed (Horn et al. 2003; Idowu et al. 2006). 
Samples were immediately transported to the laboratory for processing. 

Earthworms were stored in a container provided with aeration and moist sterile 
filter paper. Fresh vermicasts were collected from the containers after 12-15 hours 
(Bityutskii and Kaidun 2008). Earthworms were then starved for 48-72 hours, 
surface sterilized with 70% ethanol for 30 seconds, washed three times with sterile 
distilled water, and kept frozen for 3-4 hours at –16 °C (Horn et al. 2003; Byzov et 
al. 2009; Mudziwapasi et al. 2016). Gut contents were obtained through dissection 
following the protocol of Owa et al. (2013). 

Isolation and Purification of Bacteria and Fungi from ANC Gut

Bacteria and fungi were isolated from the gut samples through pour plate 
method (Byzov et al. 2009; Mudziwapasi et al. 2016). Briefly, 0.5 g of gut contents 
was suspended in 2.5 mL sterile distilled water (1:5 ratio) and vortexed until 
homogenized. Serial dilutions up to 10-7 were performed by adding 1 mL of the 
homogenized sample into 9 mL sterile distilled water. From the last two dilutions 
(10-6 and 10-7), 1 mL aliquot was inoculated onto Nutrient Agar (NA) supplemented 
with nystatin for bacterial isolation and Potato Dextrose Agar (PDA) supplemented 
with chloramphenicol for fungal isolation. NA plates were incubated for 18-72 
hours at 37 °C and for 7 days in anaerobic condition at room temperature while PDA 
plates were incubated for 5 days at 25-27 °C. For purification, colonies with distinct 
morphologies were selected and repeatedly sub-cultured (Idowu et al. 2006; Byzov 
et al. 2009; Owa et al. 2013; Bamidele et al. 2014).
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Extraction of Bacterial and Fungal DNA

Pure bacterial isolates were subjected to DNA extraction using boil lysis method 
(Dashti et al. 2009; Barbosa et al. 2016). One mL of overnight culture of bacteria in 
Nutrient Broth (NB) were centrifuged and re-suspended in 100 μL sterile distilled 
water in a 1.5 mL sterile tube, vortexed for 15 seconds, and centrifuged at 13,100 
rpm for 5 minutes. The supernatant was discarded and 100 μL sterile distilled water 
was added followed by centrifugation for 10 minutes. Pellets re-suspended in 5 μL 
sterile distilled water were boiled at 100 °C in a dry bath for 15 minutes and then 
centrifuged for 2 minutes. Supernatant containing the DNA was transferred into a 
new sterile tube. 

Fungal DNA extraction was carried out following the protocol of Liu et al. (2000). 
A lump of mycelia grown in PDA was inoculated onto a sterile 1.5 mL tube with 
500 μL lysis buffer and then left at room temperature for 10 minutes. After adding 
150 μL potassium acetate solution, the tube was then vortexed, and centrifuged at 
13,200 rpm for 1 minute. Supernatant was transferred into a new tube with equal 
volume of isopropyl alcohol, mixed, and centrifuged for 2 minutes. Pellets were 
washed with 300 μL 70% ethanol, and centrifuged at 10,000 rpm for 1 minute. After 
air-drying, pellets were dissolved in 50 μL 1x Tris-EDTA. 

Molecular Identification of Isolated Bacteria and Fungi

Polymerase chain reaction (PCR) was performed using the universal primers 
27f (5'-AGAGTTTGATCMTGGCTCAG-3') and 1392r (5'-ACGGGCGGTGTGTRC-3') for 
bacteria (Furlong et al. 2002) and ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 
(5'-TCCTCCGCTTATTGATATGC-3') for fungi (Martin and Rygiewicz 2005). For bacteria, 
the reaction mixture (25 μL) consisted of 12.5 μL of 2X Taq master mix, 1 μL of 
each primer, 2 μL bacterial DNA (control excluded DNA), and nuclease-free water. 
For amplification of 27f and 1392r (>500 bp), the PCR conditions were: initial 
denaturation for 2 minutes at 94 °C followed by 25 cycles of denaturation for 30 
seconds at 94 °C, annealing for 30 seconds at 60 °C, extension for 45 seconds at 
72 °C, and final extension for 7 minutes at 72 °C. For fungi, the reaction mixture 
(25 μL) consisted of 12.5 μL of 2X Taq master mix, 1 μL of each primer, 3 μL fungal 
DNA (control excluded DNA), and nuclease-free water. For amplification of ITS1 
and ITS4 (>500 bp), the PCR conditions were: initial denaturation for 5 minutes at  
95 °C followed by 35 cycles of denaturation for 30 seconds at 95 °C, annealing for  
1 minute at 55 °C, extension for 1 minute at 72 °C, and final extension for 6 minutes 
at 72 °C. PCR products were electrophoresed on 1.5% agarose gel with GelRed in 
TAE buffer for 30 minutes at 80 V using a 100-bp molecular weight DNA marker and 
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then submitted to Macrogen (Korea) for purification and sequencing. The Basic Local 
Alignment Search Tool (BLAST) was used for sequence identification. Sequences 
were aligned and trimmed using BioEdit prior to construction of Bayesian inference 
(BI) tree using MrBayes version 3.1.2 and TreeView version 1.6.6.

In vitro Screening of ANC Gut-associated Fungi for Antagonistic 
Activity

The antagonistic activity of isolated fungi against B. subtilis, E. coli, P. aeruginosa, 
and S. aureus was evaluated using the antagonism test following the protocol of 
Suárez-Estrella et al. (2007). Briefly, a block from a 5d-old culture of fungi in PDA 
was placed at the center of Mueller-Hinton Agar (MHA) plate. Then, 100 µL of test 
organisms cultured in Nutrient Broth were spot inoculated approximately 2.5 cm 
from the block. Plates were incubated for at least 48 hours at 30-37 °C and checked 
for inhibition indicated by the absence of any contact between fungal isolates and 
test organisms. 

In vitro Screening of ANC Gut-associated Bacteria for Polyethylene 
Utilization

Screening for polyethylene utilization was done by inoculating 100 µL of 18-24 
h-old bacterial cultures from Nutrient Broth into 10 mL sterile Bushnell Haas (BH) 
broth supplemented with 0.3% low-density polyethylene (LDPE) and high-density 
polyethylene (HDPE) powder. All broth tubes were incubated for 7 days in a shaker 
at 37 °C with 180 rpm agitation and observed daily for turbidity to confirm the 
growth of bacteria that were able to utilize polyethylene as carbon source for 
bacterial growth. 

In vitro Screening of ANC Gut-associated Bacteria for Nutrient 
Mineralization Activity

Ten μL of 18-24 h-old bacterial cultures from Nutrient Broth were spot inoculated 
onto Nitrogen-free Malate Media supplemented with bromothymol blue (BTB), 
Pikovskaya’s Agar (HiMedia M520), and Aleksandrow Agar (HiMedia M1996), 
and incubated for 5 days at 37 °C. Cultures were observed every 24 hours for 
nitrogen fixation activity indicated by a blue coloration zone (Gothwal et al. 2008). 
Phosphorus and potassium solubilizations were indicated by a clearing zone. 
Phosphorus solubilization index (SI) was calculated based on colony and zone 
diameters (Shanware et al. 2014; Sharon et al. 2016). 
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Isolates positive for nitrogen fixation were subsequently subjected to molecular 
detection of nifH gene (>300 bp) (Szymanska et al. 2016a). PCR amplification was 
carried out using the nifH gene primers 19F (5'-GCXWTYTAYGGXAARGGXGG-3') and 
388R (5'-AAXCCRCCRCAXACXACRTC-3'). The reaction mixture (23.5 μL) consisted of 
10 μL of 2X Taq master mix, 0.125 μL of each primer, 13 μL of nuclease-free water, 
and 0.375 μL bacterial DNA (control excluded DNA). The PCR conditions were: 
initial denaturation for 5 minutes at 94 °C followed by 40 cycles of denaturation 
for 30 seconds at 94 °C, annealing for 1 minute at 50 °C, extension for 1 minute 
at 72 °C, and final extension for 5 minutes at 72 °C (Szymanska et al. 2016b). PCR 
products were electrophoresed on 1.5% agarose gel with GelRed in TAE buffer for 
30 minutes at 80 V using a 100-bp molecular weight DNA marker. 

Isolates positive for phosphate solubilization were further subjected to Murphy and 
Riley (1962) method for phosphate quantification. One μL of fresh bacterial culture 
in NB was inoculated into 50 mL of NBRIP (National Botanical Research Institute’s 
Phosphate) medium at pH 7.0 supplemented with calcium phosphate (Ca3(PO4)2) as 
sole source of phosphorus while medium without inoculum served as the control. 
All flasks were incubated for 72 hours at 24 ºC under constant agitation at 120 rpm 
(Matos et al. 2017). After centrifugation and filtration, the pH of the filtrate was 
measured using pH paper while phosphate content based on absorbance values 
was measured using spectrophotometer at 880 nm (Watanabe and Olsen 1965).

Measurement of Macronutrients in Soil and Vermicasts

Twenty grams each of soil and vermicast samples were air-dried overnight and 
sieved prior to analysis (Zhang and Schrader 1993; Aira et al. 2003; Hmar and 
Ramanujam 2014). The nitrogen (N), phosphorus (P), and potassium (K) content of 
these samples were measured using NPK soil test kit (HiMedia K054M) following 
manufacturer’s instructions. 

RESULTS AND DISCUSSION

ANC Gut-associated Bacteria and Fungi 

A total of eight bacteria and six fungi were isolated from the gut of ANC (Table 1). 
The sequences of bacterial isolates showed highest similarities to Aeromonas caviae 
(99.37%), Bacillus xiamenensis (99.86%), Bacillus thuringiensis (98.54% - 99.86%), 
and Paenibacillus xylanilyticus (98.24%) (Figure 1). The sequences of fungal isolates 
showed highest similarities to Aspergillus aculeatus (99.12% - 99.82%), Aspergillus 
japonicus (99.17%), Fomitopsis sp. (99.23% - 99.83%), and Penicillium citrinum 
(99.02%) (Figure 2).
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Table 1. Bacteria and fungi isolated from the gut of African nightcrawler or ANC, 
Eudrilus eugeniae (Kinberg, 1867)

Nearest Phylogenetic 
Affiliation

Accession 
Number 

Nearest Phylogenetic 
Affiliation 

Accession 
Number 

1 Aeromonas caviae MG737573 1 Aspergillus aculeatus JX291165
2 Bacillus xiamenensis NR_148244 2 Aspergillus aculeatus MH892845
3 Bacillus thuringiensis JX994097 3 Aspergillus japonicus KC128815
4 Bacillus thuringiensis MN108016 4 Fomitopsis sp. JQ067652
5 Bacillus thuringiensis MG722793 5 Fomitopsis sp. FJ372677
6 Paenibacillus xylanilyticus KJ023382 6 Penicillium citrinum MH427065
7 Paenibacillus xylanilyticus JX281766
8 Paenibacillus xylanilyticus HF585011
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Figure 1. Bayesian inference tree of earthworm gut-associated bacteria based on 484 
nucleotides. The tree is rooted on the Bacteroidetes F. johnsoniae. The number of generations 
and heating temperature used were 10,000,000 and 0.1, respectively. Numbers on nodes 
represent posterior probability values. Values less than 0.7 are not shown.
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B. xiamenensis was also isolated from the gut of ANC in India (Utekar and Deshmukh 
2019). Other species isolated from the gut of ANC in India include Bacillus pumilus 
(Shankar et al. 2011), B. aerius, B. licheniformis, B. safensis, B. subtilis, B. tropicus 
(Utekar and Deshmukh 2019), B. cereus, and B. subtilis (Emperor and Kumar 2015; 
Govindarajan and Prabaharan 2015a, 2015b). Published studies on the isolation of  
A. caviae from earthworm gut are limited, but its occurrence in seafood, aquafarms, 
and mangroves (Joseph et al. 2013) as well as association with diarrhea/ 
gastroenteritis (Dwivedi et al. 2008) were reported. The gut of ANC was also found to 
be inhabited by Aspergillus flavus, A. fumigatus, A. nidulans, A. niger, and A. ochraceous 
(Parthasarathi et al. 2007; Bamidele et al. 2014; Emperor and Kumar 2015) as well 
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Aspergillus sp. (GU595031)

Aspergillus indologenus (MH861245)

Aspergillus uvarum (NR_135330)

Penicillium sp. (AB728537)

Penicillium citrinum

Penicillium janthinellum (KX138426)

Fomitopsis meliae (KT718002)

Fomitopsis sp. (KT194148)

Mortierella sp. (KT964847)

Fomitopsis sp.

Fomitopsis sp.

Aspergillus aculeatus

Aspergillus aculeatus

Aspergillus japonicus

0.83
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1.00

1.00

1.00
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1.00
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Figure 2. Bayesian inference tree of earthworm gut-associated fungi based on 587 nucleotides. 
The tree is rooted on the Mucoromycota Mortierella sp. The number of generations and 
heating temperature used were 10,000,000 and 0.125, respectively. Numbers on nodes 
represent posterior probability values. Values less than 0.7 are not shown.

B. xiamenensis was also isolated from the gut of ANC in India (Utekar and Deshmukh 
2019). Other species isolated from the gut of ANC in India include Bacillus pumilus 
(Shankar et al. 2011), B. aerius, B. licheniformis, B. safensis, B. subtilis, B. tropicus 
(Utekar and Deshmukh 2019), B. cereus, and B. subtilis (Emperor and Kumar 2015; 
Govindarajan and Prabaharan 2015a, 2015b). Published studies on the isolation of  
A. caviae from earthworm gut are limited, but its occurrence in seafood, aquafarms,  
and mangroves (Joseph et al. 2013) as well as association with diarrhea/
gastroenteritis (Dwivedi et al. 2008) were reported. The gut of ANC was also found to 
be inhabited by Aspergillus flavus, A. fumigatus, A. nidulans, A. niger, and A. ochraceous 
(Parthasarathi et al. 2007; Bamidele et al. 2014; Emperor and Kumar 2015) as well 
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as Penicillium sp. (Bamidele et al. 2014; Sahoo et al. 2015) while its vermicompost 
was found to have P. citrinum (Emperor and Kumar 2015).

Antagonistic Activity of ANC Gut-associated Fungi

The antagonistic activity of gut-associated fungi against Gram-positive B. subtilis 
and S. aureus and Gram-negative E. coli and P. aeruginosa was confirmed (Table 2).  
All fungal isolates showed activity against B. subtilis, E. coli, and P. aeruginosa. Growth 
of S. aureus was also inhibited by the fungal isolates except A. aculeatus. There is 
lack of information on the antagonistic activity of fungi associated with the gut 
of ANC, with most of the studies reporting the activity of its paste. ANC paste was 
reported to inhibit the growth of B. subtilis, E. coli, K. pneumoniae, and S. aureus 
(Vasanthi et al. 2013; Chauhan et al. 2014; Sethulakshmi et al. 2018). 

Table 2. Antagonistic activity of fungi isolated from the gut of African nightcrawler  
or ANC, Eudrilus eugeniae (Kinberg, 1867)

Test Organisms A.  
aculeatus 

A.  
aculeatus 

A.  
japonicus 

Fomitopsis 
sp. 

Fomitopsis 
sp. 

P.  
citrinum 

Bacillus subtilis + + + + + + 
Escherichia coli + + + + + + 
Pseudomonas 

aeruginosa 
+ + + + + + 

Staphylococcus 
aureus 

- - + + + + 

(+) with antagonistic activity, (-) without antagonistic activity

The antagonistic activity of Aspergillus, Fomitopsis, and Penicillium isolated from 
organisms other than earthworms was also reported. A. aculeatus isolated from 
Avicennia marina (black mangrove along Red Sea) and A. japonicus isolated from 
Tridax procumbens (coat button or tridax daisy) inhibited the growth of B. subtilis,  
E. coli, K. pneumoniae, P. vulgaris, Salmonella typhimurium, S. aureus, and Streptococcus 
pyogenes (Aharwal et al. 2018; Basheer et al. 2018). The activity of A. aculeatus 
against Gram-positive and -negative bacteria was associated with its secondary 
metabolites namely ergosterol, ergosterol peroxide, secalonic acid D and F, 
variecolactone, and variecolin (Yodsing et al. 2017). Fomitopsis feei, F. lilacinogilva, 
and F. rosea collected from India, Australia, and Philippines respectively, were 
tested to be effective against the above mentioned bacteria as well as E. aerogenes,  
M. luteus, and P. mirabilis (Bala et al. 2011; Nidadavolu et al. 2011; Gaylan et al. 
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2018). P. citrinum isolated from marine and soil samples inhibited the growth of B. 
subtilis, E. coli, S. typhi, and S. aureus (Christophersen et al. 1998; Gharaei-Fathabad 
et al. 2014). The inhibition was attributed to the production of mycotoxin citrinin, 
which was also found to be effective against B. cereus, B. pumilus, B. subtilis, E. coli, 
K. pneumoniae, Lactobacillus arabinosus, P. mirabilis, S. typhi, S. typhimurium, Shigella 
boydii, S. dysenteriae, S. sonnei, S. aureus, Streptococcus pneumoniae, and Vibrio cholerae 
(Mazumder et al. 2002).

Polyethylene Utilization of ANC Gut-associated Bacteria

A. caviae and B. xiamenensis utilized both low-density polyethylene (LDPE) and high-
density polyethylene (HDPE) after 120 hours of incubation (Figure 3). Members of 
Bacillus (B. mycoides and B. subtilis) isolated from mangrove soil were reported to 
degrade LDPE and HDPE (Ibiene et al. 2013) while B. megaterium isolated from 
plastic dumpsite soil was reported to degrade polyethylene in general (Mahalakshmi 
and Siddiq 2015). Other types of polymers such as polyethylene terephthalate 
(PET), polypropylene (PP), and polystyrene (PS) were degraded by Bacillus species 
from mangrove sediments and soil samples (Asmita et al. 2015; Auta et al. 2018). 
Reduction of polymer mass by 4% confirmed the utilization of PP by Bacillus sp. for 
growth after 40 days of incubation (Auta et al. 2018). Bioremediation of soil polluted 
with diesel was also associated with ANC action, along with the reduction of the 
concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, and 
vanadium (Ekperusi and Aigbodion 2015). Another earthworm species, L. terrestris, 
reduced 60% of LDPE particle size within four weeks through the action of bacteria 
(Firmicutes and Actinobacteria) associated with its gut (Lwanga et al. 2018). 
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et al. 2014). The inhibition was attributed to the production of mycotoxin citrinin, 
which was also found to be effective against B. cereus, B. pumilus, B. subtilis, E. coli, 
K. pneumoniae, Lactobacillus arabinosus, P. mirabilis, S. typhi, S. typhimurium, Shigella 
boydii, S. dysenteriae, S. sonnei, S. aureus, Streptococcus pneumoniae, and Vibrio cholerae 
(Mazumder et al. 2002).

Polyethylene Utilization of ANC Gut-Associated Bacteria

A. caviae and B. xiamenensis utilized both low-density polyethylene (LDPE) and high-
density polyethylene (HDPE) after 120 hours of incubation (Figure 3). Members of 
Bacillus (B. mycoides and B. subtilis) isolated from mangrove soil were reported to 
degrade LDPE and HDPE (Ibiene et al. 2013) while B. megaterium isolated from 
plastic dumpsite soil was reported to degrade polyethylene in general (Mahalakshmi 
and Siddiq 2015). Other types of polymers such as polyethylene terephthalate 
(PET), polypropylene (PP), and polystyrene (PS) were degraded by Bacillus species 
from mangrove sediments and soil samples (Asmita et al. 2015; Auta et al. 2018). 
Reduction of polymer mass by 4% confirmed the utilization of PP by Bacillus sp. for 
growth after 40 days of incubation (Auta et al. 2018). Bioremediation of soil polluted 
with diesel was also associated with ANC action, along with the reduction of the 
concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, and 
vanadium (Ekperusi and Aigbodion 2015). Another earthworm species, L. terrestris, 
reduced 60% of LDPE particle size within four weeks through the action of bacteria 
(Firmicutes and Actinobacteria) associated with its gut (Lwanga et al. 2018).

A B C D

LDPE HDPE

Figure 3. Low-density polyethylene (LDPE) and high-density polyethylene (HDPE) utilization 
by two bacteria, Aeromonas caviae (A, C) and Bacillus xiamenensis (B, D), shown by turbidity 
(left tube) compared with the negative control (right tube).
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A. caviae and B. xiamenensis were found to solubilize phosphate with high SI values 
of 2.67 and 2.55, respectively. After 22 hours of incubation, clearing zones were first 
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observed on Pikovskaya’s agar medium, with maximum activity detected at 96 hours 
(Figure 4). The amounts of phosphate solubilized by A. caviae and B. xiamenensis 
were higher than the control (Figure 5) with observed decrease in pH (from 7.0 
to 4.0). The two phosphate solubilizing isolates were also able to fix nitrogen on 
nitrogen-free malate medium as indicated by blue colored zones first observed 
after 96 hours of incubation, with maximum activity at 120 hours (Figure 4). The 
target nifH gene was detected in these isolates (Figure 6).
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Figure 4. Diameter of clearing zones and blue colored zones produced by bacteria isolated 
from the gut of ANC (n=3). Colony diameter = diameter of bacterial growth; zone diameter = 
diameter of clearing/blue colored zone.

Figure 5. Amount of phosphate solubilized by two bacteria, Aeromonas caviae and Bacillus 
xiamenensis.
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The presence of phosphate solubilizing bacteria (PSB) and nitrogen-fixing bacteria 
(NFB) in the gut of ANC was previously reported in India (Albasha et al. 2014; 
Sequeira and Chandrashekar 2015; Khobragade and More 2016). The mechanisms 
involved in phosphate solubilization include ion-exchange, chelation, acidification, 
and organic acid production (Chen et al. 2006). In this study, the confirmed 
mineralization activities exhibited by the bacterial isolates might be associated 
with the high P and N concentrations in vermicasts (Lee 1992; Zhang et al. 2000; 
Shamini and Fauziah 2014; Prabha et al. 2015). 

Bacteria capable of phosphate solubilization and nitrogen fixation were also 
isolated from the gut of other earthworm species. Epigeic E. fetida was found to 
be inhabited by gut-associated PSB and NFB (Hussain et al. 2016). The nitrogenase 
activity of earthworms in the gut of anecic L. terrestris as well as endogeic 
Aporrectodea rosea and A. caliginosa (Umarov et al. 2008) was evaluated. As it is in 
the present study, the maximum mineralization activity of bacteria associated with 
endogeic Metaphire posthuma was observed at 96 hours of incubation, the period 
at which bacteria might have reached exponential phase (Biswas et al. 2018). 
Likewise, Aeromonas salmonicida and A. caviae were reported elsewhere to show 
phosphate solubilization activity on Pikovskaya’s medium after 5 days of incubation 
(Chen et al. 2012). Aeromonas vaga showed solubilization efficiency when subjected 
to varying temperatures (15, 25, 35, and 45 °C) and 8% sodium chloride (NaCl) at  
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Figure 6. Molecular detection of nifH gene in two bacterial isolates, Aeromonas caviae and 
Bacillus xiamenensis.
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involved in phosphate solubilization include ion-exchange, chelation, acidification, 
and organic acid production (Chen et al. 2006). In this study, the confirmed 
mineralization activities exhibited by the bacterial isolates might be associated 
with the high P and N concentrations in vermicasts (Lee 1992; Zhang et al. 2000; 
Shamini and Fauziah 2014; Prabha et al. 2015). 

Bacteria capable of phosphate solubilization and nitrogen fixation were also 
isolated from the gut of other earthworm species. Epigeic E. fetida was found to 
be inhabited by gut-associated PSB and NFB (Hussain et al. 2016). The nitrogenase 
activity of earthworms in the gut of anecic L. terrestris as well as endogeic 
Aporrectodea rosea and A. caliginosa (Umarov et al. 2008) was evaluated. As it is in 
the present study, the maximum mineralization activity of bacteria associated with 
endogeic Metaphire posthuma was observed at 96 hours of incubation, the period 
at which bacteria might have reached exponential phase (Biswas et al. 2018). 
Likewise, Aeromonas salmonicida and A. caviae were reported elsewhere to show 
phosphate solubilization activity on Pikovskaya’s medium after 5 days of incubation 
(Chen et al. 2012). Aeromonas vaga showed solubilization efficiency when subjected 
to varying temperatures (15, 25, 35, and 45 °C) and 8% sodium chloride (NaCl) at  
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pH 10 (Jha et al. 2013). Aeromonas allosaccharophila, A. hydrophila, and A. media 
isolated from rhizospheric soil were also confirmed to be PSB (Aarab et al. 2015). 

The SI values for the phosphate solubilization activity of A. caviae and B. xiamenensis 
ranged from 2.55 to 2.67, which is comparatively higher than the reportedly high 
SI of 2.0 for Aeromonas sp. isolated from rhizospheric soils of cabbage fields in 
Iran (Motamedi et al. 2016). Species of Bacillus such as B. cereus, B. megaterium,  
B. simplex, and B. subtilis are also known phosphate solubilizers (Bahadir et al. 2018; 
Saeid et al. 2018; Zheng et al. 2018). Bacillus sp. and B. pumilus isolated from banana 
tree roots (Matos et al. 2017) as well as B. subtilis and B. tequilensis isolated from 
lentil rhizosphere in Ethiopia (Midekssa et al. 2015) solubilized calcium phosphate. 
Bacillus spp. capable of phosphate solubilization were isolated from ANC gut and 
vermicasts (Albasha et al. 2014). As what was observed in the present study, there 
was a decrease in pH with increased amount of P solubilized by rhizospheric 
Aeromonas (Kundu et al. 2009) and Bacillus species (Matos et al. 2017; Mohamed et 
al. 2018). The decrease in pH was asserted to be directly proportional to increased 
P solubilization due to acidification from secretion of organic acids (Mohamed et 
al. 2018). 

Nitrogen-fixing A. hydrophila and Aeromonas sp. were isolated from rice fields (Xie et 
al. 2003) and from the rhizosphere of cabbage (Motamedi et al. 2016), respectively. 
The genus Bacillus is known to have nitrogen-fixing species namely B. azotoformans, 
B. brevis, B. cereus, B. licheniformis, B. megaterium, B. pumilus, and B. subtilis (Xie et al. 
2003). B. subtilis isolated from the rhizosphere of ground nut exhibited nitrogen-
fixing activity (Satapute et al. 2012). The detection of nifH in Aeromonas sp. (Flores- 
Mireles et al. 2007) and in Bacillus alkalidiazotrophicus, B. arseniciselenatis (Sorokin 
et al. 2008), and B. cereus (Emmyrafedziawati and Stella 2018) was done to support 
the findings on their nitrogen fixation activity. The gene has been the biomarker of 
choice for NFB as it encodes for the nitrogenase reductase subunit of nitrogenase 
enzyme involved in nitrogen fixation (Emmyrafedziawati and Stella 2018). 

The amount of P was higher in vermicasts (56-73 kg/ha) than in the soil substrate 
(22-56 kg/ha). This is consistent with previous reports noting high P content of 
vermicomposts processed by ANC (Shamini and Fauziah 2014; Prabha et al. 2015) 
and in vermicasts of Allolobophora caliginosa (Sharpley and Syers 1976), L. terrestris  
(Le Bayon and Binet 2006), Metaphire tschiliensis tschiliensis (Teng et al. 2012),  
Drawida sp., Eutyphoeus mizoramensis, Metaphire houlleti, P. excavatus, and P. macintoshi  
(Hmar and Ramanujam 2014). The release of P in vermicasts is attributed to 
solubilization of microorganisms during gut passage (Lee 1992; Zhang et al. 2000).
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Likewise, nitrogen content, measured as nitrate nitrogen (NO3-N) in vermicasts, was 
found to be more than twice (50 kg/ha) that of the soil substrate (20 kg/ha). Several 
studies confirmed the same observation in the vermicasts of Allolobophora molleri, 
A. caliginosa (Aira et al. 2003), L. violaceus (Idowu et al. 2006), L. terrestris, Octolasion 
cyaneum (Buck et al. 1999), and M. tschiliensis tschiliensis (Teng et al. 2012) and in 
vermicomposts processed by ANC (Prabha et al. 2015), E. fetida, and P. excavatus 
(Mistry et al. 2015). Higher nitrogen content in vermicasts was associated with the 
activity of microorganisms that promote mineralization process (Mistry et al. 2015). 

The degradation of organic wastes through vermicomposting is essential for 
nutrient cycling (Yi-Wei et al. 2012). Wastes reported to be efficiently degraded 
by ANC through vermicomposting include rice straw (Yi-Wei et al. 2012), coir 
pith (Nattudurai et al. 2014), and biogas plant slurry (BPS) (Rajeshkumar and 
Ravichandran 2015). Degradation of rice straw was completed by ANC in a shorter 
time (134 days) compared to P. excavatus (171 days), resulting to higher nutrient 
content in vermicasts (Yi-Wei et al. 2012). Moreover, it only takes 60 days for ANC 
to degrade coir pith, which usually takes longer time to degrade due to its lignin-
cellulose complex (Nattudurai et al. 2014). Degradation of BPS was found to be 
enhanced by ANC as indicated by the decrease of total organic carbon (Rajeshkumar 
and Ravichandran 2015). Composts processed by ANC caused increase in plant 
height and weight, as well as increase in the length of shoots, roots, leaves, and 
root hairs of agricultural crops Cyamopsis tetragonoloba (cluster bean) (Nattudurai 
et al. 2014) and Vigna radiata (mung bean) (Rajeshkumar and Ravichandran 2015). 
Improved growth and yield of plants treated with vermicomposts were attributed 
to increased concentrations of NPK (Nattudurai et al. 2014; Rajeshkumar and 
Ravichandran 2015).

CONCLUSIONS

Eight bacteria and six fungi were isolated from the gut of ANC. The fungi identified 
as A. aculeatus, A. japonicus, Fomitopsis sp., and P. citrinum exhibited antagonistic 
activity against B. subtilis, E. coli, P. aeruginosa, and S. aureus. Among gut-associated 
bacteria identified as A. caviae, B. xiamenensis, B. thuringiensis, and P. xylanilyticus, 
the first two were found to utilize LDPE and HDPE as carbon sources for bacterial 
growth, indicating plastic biodegradation potential. Both isolates yielded high 
phosphate solubilization index and showed nitrogen fixation activity supported by 
the presence of nifH gene. High concentrations of nitrogen and phosphorus in the 
vermicasts of ANC may be associated with the confirmed mineralization activities. 
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