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ABSTRACT

Let S be an n-by-n, nonsingular, and Hermitian matrix. A square complex matrix Q 

is said to be S-unitary if Q*SQ = S. An S-unitary matrix Q is said to be elementary 

if rank(Q — I) = 1. It is known what form every elementary S-unitary can take, and 

that every S-unitary can be written as a product of elementary S-unitaries. In this 

paper, we determine the Jordan canonical form of a product of two elementary 

S-unitaries. 
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INTRODUCTION 

Let Mn be the set of all n-by-n matrices with entries in the complex field ℂ and  
let GLn be the set of all nonsingular matrices in Mn. Let S ∈ GLn be Hermitian.  
A Q ∈ Mn is said to be S-unitary if Q*SQ = S, where Q* is the conjugate transpose of 
Q (Gohberg et al. 2005). If S = I, then the set of S-unitary matrices in GLn coincides 
with the set of unitary matrices. Let US be the set of all S-unitary matrices. Observe 
that US is nonempty since I ∈ US. If Q ∈ US, then Q-1 is similar to Q*, |det Q| = 1, and 
αQ ∈ US for all α ∈ ℂ with modulus 1. Moreover, US is a group under multiplication 
and consists of all matrices in Mn that preserve the scalar product [u,v]S = u*Sv for 
all u, v ∈ ℂn. 

An H ∈ US is called elementary if rank(H – I) = 1. Let HS be the set of all elementary 
S-unitary matrices. When S is Hermitian, HS = KS ∪ LS, where

KS= {Kx,r = I + irxx*S ∶ x ∈ ℂn\{0}, x*Sx = 0, and r ∈ ℝ\{0}} 
and 

LS = {Lx,φ = I + 
(eiφ – 1)

x*Sx
 xx*S: x ∈ ℂn, x*Sx ≠ 0, φ ∈ ℝ, and eiφ ≠ 1}
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(Catbagan 2015). If v ∈ ℂn such that v*Sv ≠ 0, the ΛS-Householder matrix  

Sv = I – 
2

v*Sv
 vv*S generalizes the Householder matrix of v, which is equal to Lv,π 

for S = I (Merino et al. 2011; Horn and Johnson 2013). If Kx,r ∈ KS, then Kx,r
–1 = Kx,–r 

and Kx,r is similar to In–2 ⊕ J2 (1). If Lx,φ ∈ LS, then Lx,φ–1 = Lx,–φ and Lx,φ is similar to  
In–1 ⊕ [eiφ]. Hence H ∈ HS if and only if H–1 ∈ HS. Thus, I is a product of two elements 
of HS. Moreover, if A ∈ US, then A can be written as a product of elements of HS 

(Catbagan 2015). Thus, the elements of HS generate the group US. Since there are 
two types of elements of HS, there are three types of products of two elements of HS 
up to similarity. We wish to determine which Jordan canonical forms arise for each 
possibility, since the Jordan canonical form of a matrix reveals a lot of information 
such as its rank, nullity, eigenvalues, and their algebraic and geometric multiplicities. 
Analogous results for symplectic matrices and J-Householder matrices can be found 
in de la Rosa et al. (2012). 

PRELIMINARIES 

If S = P*P for some P ∈ GLn, then x*Sx > 0, when 0 ≠ x ∈ ℂn; and Q ∈ US if and only if 
PQP–1 ∈ UI. Hence when S is positive definite, HS = LS, and every S-unitary is similar to 
a unitary matrix. Since US = U–S, from now on we only consider S that is *-congruent 
to Ik ⊕–In–k for 0 < k < n, that is S = P * (Ik ⊕ –In–k) P, for some P ∈ GLn. 

Let n be a positive integer such that n ≥ 2, and T ⊆ ℂn be nonempty. Let TS be the 
S-perpendicular subspace of T defined by 

TS = { z ∈ ℂn | x * Sz = 0, for all x ∈ T} . 

Then dimTS = n – dim(spanT ) , since TS = (S(spanT))⊥, which is the orthogonal 
complement of S(spanT )  with respect to the usual inner product on ℂn, and  
 ℂn = W ⊕ W⊥ for any subspace W of ℂn. Let Hx, Hy ∈ HS and A = Hx Hy . Then Hx  = I + 
αxx*S and Hy = I + βyy*S, for some nonzero α, β ∈ ℂ. If {x, y} is linearly dependent, 
then y = δx, for some δ ∈ ℂ. This implies 

A = I + αxx*S + βyy*S + αβxx*Syy*S = I + (α + β|δ|2 + αβ|δ|2 x*Sx)xx*S. 

Hence A = I + μxx*S, where μ = α + β|δ|2 + αβ|δ|2 x*Sx ∈ ℂ. If μ = 0, then A = I,  
which implies Hx = Hy

–1. If μ ≠ 0, then rank(A – I) = 1, and since A ∈ US, we have  
A ∈ HS.
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Suppose {x, y} is linearly independent. Let z ∈ ℂn be given. Suppose z ∈ ker (A – I), 
that is, Az = z. Then 

0 = (A – I)z = (αx*Sz)x + (βy* Sz)y + αβ(x*Sy)(y*Sz)x. 

Since {x, y} is linearly independent, and α, β are nonzero, we have y*Sz = 0 and it 
follows that x*Sz = 0. Thus, z ∈ {x, y}S. Conversely, suppose z ∈ {x, y}S. Then x*Sz = 
y*Sz = 0 and so

(A – I)z = α(x*Sz)x + β(y*Sz)y + αβ(x*Sy)(y*Sz)x = 0, 

that is, z ∈ ker(A – I). Therefore ker(A – I) = {x, y}S. 

Lemma 1. Let S ∈ GLn be Hermitian and let x, y ∈ ℂn be nonzero. Suppose Hx, Hy ∈ HS 
and A = Hx Hy . If {x, y} is linearly dependent, then A = I or A ∈ HS. If {x, y} is linearly 
independent, then ker(A – I) = {x, y}S. 

If {x, y} is linearly independent, an immediate consequence of Lemma 1 is that 
dim(ker(A – I)) = dim({x, y}S) = n – 2. Thus, there are n – 2 Jordan blocks corresponding 
to 1 in the Jordan canonical form of A. 

For completeness, we include the following lemma, which is used several times in 
the paper and can be readily verified. If A = [aij] ∈ Mn, the trace of A is defined to be 
trA = Σn

j = 1ajj. 

Lemma 2. Let A, B ∈ M2 be given such that neither is a scalar matrix. Then A and B 
are similar if and only if trA = trB and det A = det B. 

Let {x, y} be a linearly independent subset of ℂn. We consider each of the three 
possibilities (i) Hx, Hy ∈ KS, (ii) Hx, Hy ∈ LS, or (iii) Hx ∈ KS and Hy ∈ LS, and determine the 
Jordan canonical form of the product HxHy.  

Hx, Hy ∈ KS 

Let {x, y} be a linearly independent subset of ℂn such that Hx, Hy ∈ KS, i.e.,  
Hx = I + irxxx*S and Hy = I + iryyy*S, where x*Sx = y*Sy = 0, and rx, ry are nonzero  
real numbers. If A = Hx Hy, then 

A = I + irxxx*S + iryyy*S – rxry (x*Sy)xy*S. 

Either x*Sy = 0 or x*Sy ≠ 0.
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Case 1: If x*Sy = 0, then A = I + irxxx*S + iryyy*S. Note that {x, y}S = {x}S ∩ {y}S, 
which is of dimension n – 2. If n > 2, then there exists z ∈ {y}S but z ∉ {x}S. Hence,  
(A – I )z = irx(x*Sz)x ≠ 0. Since x*Sx = y*Sy = x*Sy = 0, we have (A – I ) 2 = 0. Since 
A – I ≠ 0, the minimal polynomial of A is (x – 1)2 and so the largest Jordan block 
corresponding to 1 is of size 2. The number of Jordan blocks corresponding to 1 of 
size 1 is rank(A – I ) 0 –2 rank(A – I )  + rank(A – I )2 = n – 2(2) + 0 = n – 4. Since 1 is 
the only eigenvalue of A and there are n – 2 Jordan blocks corresponding to 1, A  
is similar to In – 4 ⊕ J2 (1) ⊕ J2 (1). If n = 2, then x*Sy ≠ 0, otherwise x*Sx = y*Sy = 
x*Sy = 0 and {x, y} linearly independent imply ℂ2 = {x, y}S is of dimension n – 2 = 0, 
which is a contradiction. 

Case 2: Suppose x*Sy ≠ 0. We find any remaining eigenvalues of A. The images of  
x and y under A are 

Ax = x + irx(x*Sx)x + iry(y*Sx)y – rx ry (x*Sy)(y*Sx)x = (1 – rx ry|x*Sy|2) x + iry (y*Sx)y 

and 

Ay = y + irx (x*Sy)x + iry (y*Sy)y – rx ry (x*Sy)(y*Sy)x = y + iry (x*Sy)x . 

Hence span{x, y} is invariant under A. Consider the restriction of A to span{x, y} and 
its matrix representation 

M = 
1 – rx ry |x*Sy|2 	 iry (x*Sy)

    iry (y*Sx)              1

with respect to the ordered basis {x, y}. Since x*Sx = y*Sy = 0 and x*Sy ≠ 0, we have 
ℂn = span{x, y} ⊕ {x, y}S. Thus A is similar to M ⊕ In–2 and 1 is not an eigenvalue of 
M. Note that det(M) = 1 and tr(M) = 2 – rxry |x*Sy|2 ∈ ℝ. Since A ∈ US has determinant 
1 and M is not a scalar matrix, we see that M is similar to one of the following: 
diag(eiθ, e–iθ), where θ ∈ ℝ such that eiθ ≠ ±1; J2(–1); or diag(λ, λ–1), where λ ∈ ℝ and 
|λ| > 1. We determine if the preceding three possibilities for the Jordan canonical 
form of M occur. 

Let θ ∈ ℝ such that eiθ ≠ ±1. If we choose rx, ry ∈ ℝ such that rx ry = 
2(1–cosθ)

|x*Sy|2
  ≠ 0,  

then det (M) = 1 = det (diag(eiθ, e–iθ)) and tr (M) = 2 cosθ = tr (diag(eiθ, e–iθ)). By 

Lemma 2, M is similar to diag(eiθ, e–iθ).
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If we choose rx, ry ∈ ℝ such that rx ry = 
4

|x*Sy|2
, then tr(M) = –2 = tr(J2 (–1)) and 

det (M) = 1 = det (J2 (–1)). By Lemma 2, M is similar to J2(–1). 

Let λ ∈ ℝ such that |λ| > 1. If we choose rx, ry ∈ ℝ such that rx ry = 
(2–λ–λ–1)

|x*Sy|2
 ≠ 0,  

then we have det (M) = 1 = det (diag(λ, λ–1)) and tr(M) = –2 = tr(diag(λ, λ–1)).  

Since λ ≠ λ–1, we have that M is similar to diag(λ, λ–1). 

Theorem 3. Let S ∈ GLn be indefinite Hermitian and x, y ∈ ℂn be given. If {x, y} is linearly 
independent and Hx, Hy ∈ KS, then the product HxHy is similar to one of the following: 

a. 	 In–4 ⊕ J2 (1) ⊕ J2 (1) 

b. 	 In–2 ⊕ J2 (–1) 

c. 	 In–2 ⊕ diag(eiθ, e–iθ), where θ ∈ ℝ such that eiθ ≠ ±1 

d. 	 In–2 ⊕ diag(λ, λ–1), where |λ| > 1 and λ ∈ ℝ. 

Hx, Hy ∈ LS 

We now consider the product of two elements of LS. Let x, y ∈ ℂn such that {x, y} is  

linearly independent and Hx, Hy ∈ LS, that is, Hx = I + 
eiα –1
x*Sx

xx*S and  

Hy = I + 
eiβ –1
y*Sy

 yy*S, where x*Sx and y*Sy are nonzero, and α, β ∈ ℝ such that  

eiα ≠ 1 and eiβ ≠ 1. Since Hy = Hay for all nonzero a ∈ ℂ, we can assume that x*Sx,  

y*Sy ∈ {1, –1}. If A = Hx Hy, then 

A = I + 
eiα –1
x*Sx

xx*S + 
eiβ –1
y*Sy

 yy*S + 
eiα –1
x*Sx

eiβ –1
y*Sy

(x*Sy)xy*S. 

Case 1: If x*Sy = 0, then A = I + 
eiα –1
x*Sx

xx*S + 
eiβ –1
y*Sy

 yy*S. Observe that  

Ax = x + (eiα –1)x = eiαx. Hence, x is an eigenvector of A corresponding to eiα.  

Similarly, y is an eigenvector of A corresponding to eiβ. Since x*Sx and y*Sy are 

nonzero and x*Sy = 0, we have ℂn = span{x, y} ⊕ {x, y}S. Hence A is similar to  

In–2 ⊕ diag(eiα, eiβ).
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Case 2: Suppose x*Sy ≠ 0. We find any remaining eigenvalues of A. The images of  
x and y under A are 

Ax = x + (eiα –1)x + 
eiβ –1
y*Sy

 (y*Sx)y + 
eiα –1
x*Sx

eiβ –1
y*Sy

 (x*Sy)(y*Sx)x 

= �eiα + 
eiα –1
x*Sx

eiβ –1
y*Sy

 |x*Sy|2�x + �
eiβ –1
y*Sy

 (y*Sx)�y 

and 

Ay = y + 
eiα –1
x*Sx

 (x*Sy)x + 
eiβ –1
y*Sy

 (y*Sy)y + 
eiα –1
x*Sx

eiβ –1
y*Sy

 (x*Sy)(y*Sy)x 

= eiβy + �eiβx*Sy 
eiα –1
x*Sx

�x. 

Hence span{x, y} is invariant under A. Consider the restriction of A to span{x, y} and 
its matrix representation 

L = 

eiα + 
eiα –1
x*Sx

eiβ –1
y*Sy

 |x*Sy|2		  eiβx*Sy 
eiα –1
x*Sx

       
eiβ –1
y*Sy

 (y*Sx )                               eiβ

with respect to the ordered basis {x, y}. 

Note that ax + by ∈ {x, y}S for some a, b ∈ ℂ if and only if x*S(ax + by) = 0 and  

y*S(ax + by) = 0, that is 
x*Sx 	 x*Sy 
y*Sx 	 y*Sy� � a

b  = 0
0 .  Since x*Sx, y*Sy ∈ {1, –1}, we  

have {x, y}S ∩ span{x, y} = {0} if and only if x*Sx and y*Sy have opposite signs or 

|x*Sy| ≠ 1. 

If x*Sx = y*Sy ∈ {±1} and |x*Sy| = 1, then x, y ∉ {x, y}S and 

{x, y}S ∩ span{x, y} = span{(x*Sy)x – (x*Sx)y}.
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Hence span{x} ⊕ {x, y}S is of dimension n–1 and contains span{x, y}. Now Ax can be 
rewritten as Ax = ei(α+β) x – (eiβ –1)(y*Sx)[(x*Sy)x – (x*Sx)y]. This implies that span{x} 
⊕ {x, y}S is invariant under A. Since detA = ei(α+β) and rank(A – I) = 2, we have that A 
is similar to In–3 ⊕ J2 (1) ⊕ [ei(α+β)], if ei(α+β) ≠ 1; or In–3 ⊕ J3 (1), if ei(α+β ) = 1. 

If ℂn = span{x, y} ⊕ {x, y}S, then A is similar to In–2 ⊕ L and 1 is not an eigenvalue of 

L. Observe that det L = ei(α+β) and tr L = eiα + eiβ + 
eiα –1
x*Sx

eiβ –1
y*Sy

 |x*Sy|2. 

Since A ∈ US and L is not a scalar matrix, then L is similar to one of the following: 

diag(eiθ, eiϕ), where θ, ϕ ∈ ℝ such that eiθ, eiϕ are distinct and both are not equal to 1; 
J2 (λ), where |λ| = 1 but λ ≠ 1; or diag (λ, λ–1), where |λ| > 1. 

It suffices to determine whether the last two possibilities for the Jordan canonical 
form of L occur. But first we need to determine the possible nonzero values of  
x*Sy, when x*Sx, y*Sy ∈ {1, –1} and {x, y} is linearly independent. Let ei ∈ ℂn  
denote the column with ith entry 1 and 0 elsewhere. Suppose c ∈ ℂ is nonzero and 
S = P*(Ik ⊕ – In–k)P, for some nonsingular P and integer 0 < k < n. If |c| > 1, we can 
take x, y ∈ ℂn such that Px = e1 and Py = ce1 +    |c|2 –1ek+1, so that x*Sx = 1, y*Sy = 
|c|2 – (|c|2 – 1) = 1, and x*Sy = c. Thus, if |c| > 1, there exists a linearly independent 
set {x, y} such that x*Sx = y*Sy and x*Sy = c. If c ∈ ℂ is nonzero and we take x, y ∈ 
ℂn such that Px = e1 and Py = ce1 +    |c|2 –1ek+1, then x*Sx = 1, y*Sy = |c|2 – (|c|2 + 1) 
= –1 and x*Sy = c. Hence every nonzero c ∈ ℂ can be realized as x*Sy by a linearly 
independent set {x, y} such that x*Sx = –y*Sy, when S is *-congruent to Ik ⊕ –In–k. 

Let α = β ∈ ℝ such that α ≠ kπ, for all k ∈ ℤ. If a = Re(eiα), then 
–4eiα

(eiα – 1)2 
 = 

2
1–a 

 > 1.  

If we take x, y ∈ ℂn such that x*Sx = 1 = y*Sy and |x*Sy|2 = 
–4eiα

(eiα – 1)2 
, then  

tr L = 2eiα + (eiα–1)2 |x*Sy|2 = –2eiα and det L = ei2α. Since L is not a scalar matrix, it 

follows from Lemma 2 that L is similar to J2 (–eiα), where eiα ≠ ±1. 

If we take eiα = e–iβ = i, and x, y ∈ ℂn such that x*Sx = 1 = –y*Sy and |x*Sy| = 1,  
then tr L = –2 and det L = 1. Since L is not a scalar matrix, L is similar to J2(–1). 

Let λ = reiθ, where r > 1 and θ ≠ 2kπ for all k ∈ ℤ. Then – 
eiθ(r –1)2

(eiθ–1)2r 
 is positive. 

�

�
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If we take α = β = θ, and x, y ∈ ℂn such that x*Sx = 1 = –y*Sy and |x*Sy|2 =  

– eiθ(r –1)2

(eiθ–1)2r 
, then tr L = 2eiθ– (eiθ–1)2 |x*Sy|2 = eiθ (r + r–1) = λ + λ–1 and  

det L = ei2θ = λ λ–1 . Hence L is similar to diag(λ, λ–1). 

Let λ = r, where r > 1. Let β = –α and α ∈ ℝ such that Re(eiα) = r–1. Since (r –1)2

r 
 

> 0, we have r –r –1

2(1–r–1) 
 > 1. If we take x, y ∈ ℂn such that x*Sx = 1 = y*Sy and  

|x*Sy|2 = r –r –1

2(1–r–1) 
 , then tr L = 2r–1 + 2(1–r–1) |x*Sy|2 = r + r–1 and det L = 1. Hence 

L is similar to diag(r, r–1). 

Theorem 4. Let S ∈ GLn be indefinite Hermitian and x, y ∈ ℂn be given. If {x, y} is 
linearly independent such that Hx, Hy ∈ LS, then the product HxHy is similar to one of the 
following: 

a. 	 In–2 ⊕ diag(eiθ, eiϕ), where θ, ϕ ∈ ℝ such that eiθ, eiϕ ≠ 1 

b. 	 In–3 ⊕ J2 (1) ⊕ [eiθ], where θ ∈ ℝ and eiθ ≠ 1 

c. 	 In–3 ⊕ J3 (1) 

d. 	 In–2 ⊕ J2 (λ), where |λ| = 1 and λ ≠ 1 

e. 	 In–2 ⊕ diag(λ, λ–1), where |λ| > 1. 

Hx ∈ KS and Hy ∈ LS 

Lastly, we consider the product of an element of KS and of LS. If x, y ∈ ℂn are nonzero 
such that Hx ∈ KS and Hy ∈ LS, then Hx = I + irxx*S, where r ∈ ℝ ∖ {0}, and x*Sx = 0, 

and Hy = I + eiα–1
y*Sy

 yy*S, where eiα ≠ 1. Note that {x, y} is linearly independent 

since x*Sx = 0 ≠ y*Sy. If A = Hx Hy, then 

A = I + irxx*S + eiα–1
y*Sy

 yy*S + ir eiα–1
y*Sy

 (x*Sy) xy*S. 

Case 1: If x*Sy = 0, then A = I + irxx*S + eiα–1
y*Sy

 yy*S, Ax = x, and Ay = eiαy. Since 

x*Sy = 0 and x*Sx = 0, we have (A – I )2 = (eiα–1)2

y*Sy
 yy*S and (A – I )3 = (eiα–1)3

y*Sy
 yy*S .
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Observe that rank(A – I ) = 2 and rank (A – I )2 = rank(A – I )3 = 1 , which imply that 2  
is the size of the largest Jordan block corresponding to 1, and the number of Jordan 
blocks of size 2 corresponding to 1 is rank(A – I ) – 2rank(A – I )2 + rank(A – I )3 =  
2 – 2(1) + 1 = 1. Since there are n–2 Jordan blocks corresponding to 1 and  
det A = eiα, we have that A is similar to In–3 ⊕ J2 (1) ⊕ [eiα]. 

Case 2: Suppose x*Sy ≠ 0. The images of x and y under A are 

Ax = x + eiα–1
y*Sy

 (y*Sx)y + ir eiα–1
y*Sy

 |x*Sy|2x 

= �1+ir eiα–1
y*Sy

 |x*Sy|2� x + eiα–1
y*Sy

 (y*Sx)y 

and 

Ay = y + ir(x*Sy)x + (eiα –1)y + ir(eiα – 1)(x*Sy)x = ireiα (x*Sy)x + eiαy. 

Hence span{x, y} is invariant under A. Consider the restriction of A to span{x, y} and 
its matrix representation 

K = 

1 + ir 
eiα –1
y*Sy

 |x*Sy|2		  ireiα(x*Sy)

       
eiα –1
y*Sy

 (y*Sx ) 		      eiα

with respect to the ordered basis {x, y}. Since ℂn = span{x, y} ⊕ {x, y}S, A is similar  
to In–2 ⊕ K and 1 is not an eigenvalue of K. Note that det K = eiα ≠ 1 and tr K = eiα  

+ 1 + ir 
eiα –1
y*Sy

 |x*Sy|2. Since A is S-unitary, K is similar to one of the following: 

diag(eiθ, eiϕ), where θ, ϕ ∈ ℝ such that eiθ, eiϕ are distinct with both not equal to 1, 
and ei(θ + ϕ) = eiα; or diag(λ, λ–1 ), where |λ| > 1 and λ ≠ ±1. 

We now determine whether the three possibilities for the Jordan canonical form of 
K occur.
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Let θ, ϕ ∈ ℝ such that eiθ, eiϕ, and ei(θ+ϕ) are not equal to 1, and eiθ ≠ eiϕ. If  

α = θ + ϕ, choose r ∈ ℝ such that r(eiα –1) = (y*Sy)(1–eiθ)(eiϕ–1)
i|x*Sy|2

. This has 

a solution since (1–eiθ)(eiϕ–1)
eiα –1

 = –1 + eiθ + eiϕ–2
eiα –1

 is nonzero and the real 

part of eiθ + eiϕ–2
eiα –1

 is 1. Then det K = ei(θ + ϕ) = det(diag(eiθ, eiϕ)) and tr K = eiθ +  

eiϕ = tr(diag(eiθ, eiϕ)). Thus K is similar to diag(eiθ, eiϕ). 

Let λ = teiγ, where t, γ ∈ ℝ such that t > 1 and ei2γ ≠ 1. Choose α = 2γ and r ∈ ℝ such that 

r(eiα –1) = (y*Sy) (1–teiγ) (t–1eiγ– 1)
i|x*Sy|2

. This has a solution since (1–teiγ) (t–1eiγ– 1)
eiα–1

 

= –1 +  (t + t –1) eiγ– 2
ei2γ–1

 is nonzero and the real part of  (t + t –1) eiγ– 2
ei2γ–1

 is 1.  

Then det K = λ λ–1 = det(diag(λ, λ–1 )) and tr K = (t + t–1) eiγ = tr (diag(λ, λ–1)). By 

Lemma 2, K is similar to diag(λ, λ–1). 

Let λ = eiβ, where β ∈ ℝ and λ ≠ ±1. Choose α = 2β and r ∈ ℝ such that  

r = (1–λ) y*Sy 
i(λ + 1)|x*Sy|2

. This has a solution since 1–λ
λ + 1

 = –1 + 2
λ + 1

 and the real 

part of 2
λ + 1

 is 1. Then det K = λ2 = det J2 (λ) and tr K = 2λ = tr J2 (λ). Since K is 

not a scalar matrix, K is similar to J2(λ). 

Theorem 5. Let S ∈ GLn be indefinite Hermitian and x, y ∈ ℂn be given. If {x, y} is linearly 
independent such that Hx ∈ KS and Hy ∈ LS, then the product Hx Hy is similar to one of 
the following: 

a. 	 In–3 ⊕ J2 (1) ⊕ [eiα], for some α ∈ ℝ such that eiα ≠ 1 

b. 	 In–2 ⊕ diag(eiθ, eiϕ), where θ, ϕ ∈ ℝ such that eiθ, eiϕ, ei(θ + ϕ) are all not equal 
to 1, and eiθ ≠ eiϕ 

c. 	 In–2 ⊕ diag(λ, λ–1), where |λ| > 1 and λ ∉ ℝ 

d. 	 In–2 ⊕ J2 (λ), where |λ| = 1 but λ ≠ ±1.
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