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ABSTRACT

Let k be an integer such that k > 2. An n-by-n matrix A is said to be strictly
k-zero if Ax =0 and A"# 0 for all positive integers m with m < k. Suppose A
is an n-by-n matrix over a field with at least three elements. We show that,
if A is a nonscalar matrix with zero trace, then (i) A is a sum of four strictly
k-zero matrices for all k €{2,..., n}; and (ii) A is a sum of three strictly k-zero
matrices for some k €{2,..., n}. We prove that, if A is a scalar matrix with
zero trace, then A is a sum of five strictly k-zero matrices for all k e {2,..., n}.
We also determine the least positive integer m, such that every square complex

matrix A with zero trace is a sum of m strictly k-zero matrices for all k € {2,..., n}.

Keywords: Nilpotent matrix, trace, Jordan canonical form

INTRODUCTION

Let F be a field. We denote by M, (F) the set of n-by-n matrices with entries from F.
A matrix A e M (F) is said to be nilpotent or k-zero if A“= 0, for some positive
integer k. If A is nilpotent, the least positive integer k, such that A= 0, is called
the index of nilpotence of A. We say that A is strictly k-zero if A is nilpotent with
index k. If A is (strictly) 2-zero, we say that A is (strictly) square zero.

The sum of nilpotents problem, which is the problem of expressing a square matrix
as a sum of a finite number of nilpotent matrices,was first considered by J. Wang
and P.Wu in 1991.In particular,they showed that a square matrix A over a complex
Hilbert space is expressible as a sum of two strictly square zero matrices if and
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onlyif Ais similar to —A (Wang and Wu 1991). K. Takahashi (1999) gave necessary
and sufficient conditions for a diagonalizable square complex matrix with two
distinct nonzero eigenvalues to be expressible as a sum of three strictly square
zero matrices. J.D. Botha (2012) generalized Wang and Wu’s result over arbitrary
fields. C.D. Pazzis (2017) proved that every trace zero matrix over an arbitrary
field is a sum of four strictly square zero matrices. He also proved that every trace
zero matrix over a field with characteristic two is a sum of three strictly square
zero matrices.

The sum of nilpotents problem has different variations, depending on the conditions
imposed on the nilpotent matrices, such as the index, number of summands, and
underlying field. One can ask: for a fixed field F and a fixed index k,when is an
n-by-n matrix over F a sum of m strictly k-zero matrices? For F = C (the field of
complex numbers) and k = 2, this has been answered by Wang and Wu (1991) for
m = 2,and was considered by Takahashi (2000) for m = 3. One can also consider the
question: for a fixed index k and a fixed number m of summands, when is an n-by-n
matrix a sum of m strictly k-zero matrices over an arbitrary field? For k = 2, this has
been answered by J.D. Botha (2012) for m = 2, and was considered by C.D. Pazzis
(2017) for m = 3. However, these results have only considered the case when the
index is two. In this paper, we look into the sum of nilpotents problem for all
indices and for fields with at least three elements.

Suppose F is a field with at least three elements. By examining all possible Jordan
canonical forms of a nilpotent matrix, we show that every nilpotent Ae M_(F) is
expressible as a sum of two strictly k-zero matrices for all k €{2,..., n} (see
Theorem 12). We use this theorem together with a result of P.A. Fillmore (1969)
to show that, if Ae M_(F) is a nonscalar matrix, then A has zero trace if and only if
A is expressible as a sum of two strictly k-zero matrices and two strictly I-zero
matrices forany k, Il € {2,..., n} (see Theorem 13). Thus, every trace zero nonscalar
matrix over a field with at least three elements is a sum of four strictly k-zero
matrices for all k € {2,..., n} (see Corollary 14). We also show that every trace zero
nonscalar matrix is a sum of three strictly k-zero matrices for some k e {2,..., n}
(see Corollary 15). We prove that every trace zero scalar matrix over a field with at
least three elements is a sum of five strictly k-zero matrices for all k e {2,..., n}
(see Corollary 16). Since zero trace is a necessary condition for a given square
matrix to be expressible as a sum of nilpotent matrices, we prove that four is the
minimum number m of summands, such that every A e M _(C) with tr (A)=01is a
sum of m of strictly k-zero matrices for all k € {2,..., n} (see Corollary 17).
Furthermore, if Ae M_(C) is not expressible as a sum of two strictly k-zero
matrices for some k € {2,..., n}, we show that there exist a positive integer m and
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Be M (C),suchthat 4 @ B is expressible as a sum of two strictly /-zero matrices
forall I €{2,..., n} (see Theorem 18). We also show that, if 4 is a diagonalizable
complex matrix with two distinct eigenvalues which is not expressible as a sum of
three strictly square zero matrices, then there exist a positive integer t and a matrix
C e M(C), such that 4 @ C is a sum of three strictly square zero matrices (see
Theorem 19).

PRELIMINARIES

Let F be a field. We denote the characteristic of F by char (F). Given 4 = [“u'] eM (F),
we define the spectrum of 4,denoted o (4), as the set of eigenvalues of 4 and the
trace of 4as trd =) " a,.For a positive integer k and A e F,we define the
k-by-k Jordan block corresponding to A as J,(L) = [A] for k=1,and

1

A1 00

0 A 10|
BAIC) TR S AL S

00 0241

|00 0024

=

for k> 1. Note that J, (0) is strictly upper triangular,and hence, nilpotent. In particular
J,(0) is a strictly k-zero matrix.

Let AeM (F) be strictly k-zero. Then, 0 is the only eigenvalue of 4, and by the
Jordan Canonical Form (JCF) Theorem, 4 is similar to

D@L, 0,

for some positive integers n,, such thatk=n,2n,2...n, and 3 " n, = n. Every
matrix similar to 4 is also strictly k-zero. If BeM (F) is strictly /-zero, then 4 &
BeM  (F) is strictly j-zero, where j = max {k,1}.

Let m and k be positive integers. We denote by N (F) the set of all square matrices
over F which are expressible as a sum of m strictly k-zero matrices. Note that
N{ (F) is the set of all strictly k-zero matrices over F, and N{ (F) is the set of all
zero square matrices over F. The following proposition gives some elementary
properties of matrices in N (F).
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Proposition 1. Let 4eN¢ (F).

(@) Then, the trace of 4 is zero.

(b) If 0 = aeF, then a AeN( (F).

(c) If A is similar to C, then CeN™ (F).

(d) If r < kand BeN® (F), then 4® BeN™ (F)

(e) If F has at least three elements, then AeN@*» (F). That is,N® (F) = N (F)
for all positive integers m and k.

Proof. Let 4eN™ (F). Note that (a) holds because every nilpotent matrix has zero
trace, and the trace function is additive. Since nilpotence is preserved under
multiplication by a nonzero scalar and under similarity, (b) and (c) hold. Since the
direct sum of a strictly k-zero matrix and a strictly »-zero matrix is also strictly
k-zero whenever r < k, (d) is true. If BeN® (F)and F has at least three elements,
then there exists aeF-{0,1} so that B = aB + (1-a)B is a sum of two strictly k-
zero matrices. Thus, (e) holds.

We state a consequence of Theorem 2 in P.A. Filmore (1969), which describes
nonscalar matrices over arbitrary fields and with zero trace up to similarity.

Theorem 2. Let F be an arbitrary field. If 4e M (F) is a nonscalar matrix with zero
trace, then 4 is similar to a matrix with zero diagonal entries.

If Ae M (F) is a nonscalar matrix with zero trace, then Theorem 2 guarantees that
A is similar to a matrix B whose diagonal entries are zero. Now, B is a sum of an
upper triangular matrix and a lower triangular matrix, each of which has diagonal
entries zero. It follows that 4 is a sum of two nilpotent matrices. Conversely,
because the trace of a nilpotent matrix is zero, if 4 is a sum of two nilpotent
matrices, then the trace of 4 is zero. We summarize this in the following corollary.

Corollary 3. Let F be an arbitrary field and AeM (F) be a nonscalar matrix. Then
trA=0if and only if 4 is a sum of two nilpotent matrices.

Note that Corollary 3 is not true if we fix the index of nilpotence of the two
summands. This is evident from Theorems 1 and 2 in J.D. Botha (2012). A polynomial
feF[x] is said to be even-powered (odd-powered) if flx)=g(x?) (fx)=xg(x2)) for
some geF[x].
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Theorem 4. Let AeM_(F).
(@) If char (F) # 2, then 4eN(F) if and only if 4 is similar to —A.

(b) If char (F) =2, then 4eN;(F) if and only if all invariant factors of 4 are even-
powered or odd-powered monic polynomials.

We include Proposition 1 in K. Takahashi (2000), which gives necessary and sufficient
conditions for a diagonalizable complex matrix with two distinct eigenvalues to be
expressible as a sum of three strictly square zero matrices.

Theorem 5. Let 4e M, (C) with tr 4 = 0 and assume that 4 is similar to
(—D:":‘diag (B.a)® al,,

where a. = B, and m and r are positive integers. Then, 4eN;(C) if and only if r is
a divisor of 2m.

We cite Theorems 1.1 and 1.3 in C.D. Pazzis (2017) concerning trace zero matrices
over arbitrary fields,and over fields with characteristic two.

Theorem 6. Let F be a field and 4e M (F).
(a) Then, tr A =0 if and only if 4eNJ(F).
(b) If char (F) =2, then tr 4 =0 if and only if 4eNJ(F).

By Proposition 1(a), if AeN(:’ (F)for any positive integers m and &, then tr A = 0. Thus,
it follows from Theorem 6 that, if char (F)=2,then N(F) = N"(F) for all integers
m 23, and if char (F) # 2, then N;(F) c N(F) = N” (F) for all integers m > 4.

Let char (F) = 2.Let n >2 and 4e M, (F) be the companion matrix associated with
the monic polynomial p(x) = x"+ x+ 1. Note that p(x) is the only invariant factor of
4, and p(x) is neither odd-powered nor even-powered for all integers n > 2.
Since the coefficient of x™! in p(x) is zero, it follows that t+ 4 = 0. By Theorems
4(b) and 6(b), it follows that 4¢NP(F) and 4eNJ(F), respectively. Thus, we have
that N,®(F) c N,®(F) whenever char (F) = 2.

Let char (F) # 2. Suppose Ae M (F),such that tr 4 =0 and 4 is not similar to —4. In
Theorem 1.2 of C.D. Pazzis (2017), he proved that B:= 4® 0, e N9 (F). However,
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B&NZ(F) by Theorem 4(a). Hence, it follows that N,2(F) = N,®(F) whenever char (F) # 2.
Therefore, N,?(F) = N,®(F) for any field F.

MAIN RESULTS

Definition. Let 4e M (F) and BeM, (F). We define AXIB by

( mn A ]
AXIB = B 0

eM . (F).

Note that AX1 B has full rank if and only if 4 and B have full ranks. Hence, AXIB is
nonsingular if and only if 4 and B are nonsingular. If m and » are positive integers
such that m, n>2, then

3

J(0) = 1,0, and J (0)®J,(0)= (I, ®0 &I )0 .

Observe that, if 4 is an upper triangular matrix, then 4 0, is strictly upper triangular.
Moreover, if 4, C € M (F) and B, D € M (F) ,then

(AXIB) + (CED) = (4+C) X (B+D),

and, if m =n,then

D0

(4
(AXB) (CED) = \L s

Matrices over fields with at least three elements
Throughout this section, we assume that F is a field with at least three elements.

Lemma 7. Let m be a positive integer. Then, J (0)e N® (F) for any integer k with
2<k<m.

Proof. Let m and k be integers, such that 2 < k < m. We consider two cases: m > 2k —1
and m <2k —1.
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Case 1. Suppose m>2k —1. Since k> 2, we have 2k-2 > 0. By the Division Algorithm,
there exist nonnegative integers n and r,such that m=n(2k -2) + rand 0 <r < 2k -2.
Consider the matrix

A:éDUAM®%Q®XH

where
J(0), ifr<k

X, =1, (0 ®0,,, ifk<r<2k-2

r—k’
and X, is absentif r=0.Let s be a nonnegative integer, such that

r-(k-1), ifrxk-1
5={r+(k—1), ifr<k-1.

Define

J(0), if1<s <k
Y=U,(0) @0, ifs>k

and consider the matrix

Op—1 @ |:® (Jx(0) ®& ﬁ:.-—z)j| @Y, ifr=zk-1
B _ i=l1
Op—1 & {EB (Jx(0) @ Ox—2)

i=1

eY, ifr<k-1,

where Y_is absent if s=0.Then, A, BeM_(F) are strictly k-zero matrices, such that
J.(0)=A+B.

Case 2. Suppose m < 2k -1. Then, it follows that 2k-m-1>1and0<m-k<k -
1. Since F has at least three elements, there exists ae F —{0, 1} . Then, we have

Jm(o) = [(Im—k D aIﬁk—m—l & Om—k) X 01] +
[(Op—k ® (1 — @) Log—m—1 @D Im—i) K 04).

One can check that the two summands are strictly -zero matrices.
@ i i a b
Note that J,(0)¢ N’ (Z,). Otherwise, there exists A= d eM,(Z,), such that A
c

and J,(0) — A are strictly square zero matrices, which implies that 0=det (J,(0) A) =
ad-(b—-1)c=detA+c=0+c. Thatis,c=0. Since A>=0,we geta?+bc=0andd? +bc=0.
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Hencea=d=0.Since A#0,and Ae M, (Z,), we have A=J,(0), which is a contradiction
because J,(0) —A is strictly square zero. Thus,Lemma 7 fails to hold when F = Z, and
m=2. However,by Theorem 6, we have J,(0)e N®) (Z,). Moreover, by using Case
1 of Lemma 7, it follows that for any integer n > 2, J,(0)e N? (Z,).

Lemma 8.Let Ae M_(F) with A=@"_,J (0) and n,>n,>..>n_>2 Then,AeN (F).

PEn

Proof. Let Ae M (F) with A= @;ﬂl J,(0)andn >n,>..>n_>2. Suppose aeF-{0,1}.
Then, we have

1

A= (a_a (aln,—1 @[a])@aln",_,) ® 0,

i

T (EB(U —a)p 1 ®[-a))®(1- a)fn.,.-l) & 0,.

i=1
which is a sum of two strictly n-zero matrices.

In the previous lemma, we showed that, if Ae M_(F) is nilpotent without J,(0)
blocks in its JCF,then A is a sum of two strictly n-zero matrices. We now show that
the same A is a sum of two strictly k-zero matrices forn—-n, <k <n.

) j
Lemma 9. Let A e M, (F) with A= 1J (0), where n2n,>..2n >2. Let | = X n,

and k be an integer, such that I <k <n.Then, A e N?(F).

j+1
Proof. Let Ae M_(F)with A= 9 Jni (0), wheren,2n,> ... > n,,2 2. Let I = Elni
and let k be an integer, such that | <k < n.There exists a unique positive integer k,,
such thatk=1+k and 0 <k, < N, Note that

J+1

i
A= J.(0) = |PD (L eaol)se-rn)._l,,] R 0.
i=1 i=1

letX =@ ! ('"rl ® 01)@ I, Letae F-{0,1},and consider

i=1

— J
Y o= ®al, o @[]0 (@ L(an, @ [a]))@ al, @0,

Mje1k
and

Z = Onj+l—k1 ® (1_ a)lnl—(nj+1—kl+l) ® [_a]

® [é ((17 a)l, ;@ pa])j@ (1-a)ly, . ® I, .

i=2
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Observe that X, Y, ZeM_,(F) and that Y and Z have rank k-1.Since X=Y + Z and
A=XX0,wehave A=(Y X0,)+ (ZXO0,). Moreover,Y X 0, and Z X 0, are strictly
k-zero.

We now apply Lemmata 7 - 9 to show that the n-by-n matrix described in Lemmata
8 and 9 is a sum of two strictly k-zero matrices for 2 <k <n.

Lemma 10.Let Ae M_(F) with A= @ In (O)andn ..2zn >2. Then, AeN(Z) (F)
for any integer k W|th 2<k<n.

Proof. Let Ae M (F) with A= e, " J, (0) and n, .z n_>2. Suppose kandn
are integers, such that2 <k <n.We con5|der f|ve cases.

Case 1. Suppose k<n_.Then,k<n, foralli=1,.,m. BylLemma 7, we can write
J.(0) =A, + B, where A,B,eM, _ (F) are strictly k-zero. Hence,

A= @A DB

is a sum of two strictly k-zero matrices.

Case 2. Suppose k = n forsome je {1,..., m-1} Then,n <k foralli>jso that
J (0) is k-zero for alll >j,and hence, ® _,+1J (0) is k-zero.For 1<j,we have n> k.
If'1 <j,then, by Lemma 7, we can write J (O) = A, +B, where A, B,e M, (F) are
strictly k-zero. Thus,

e=(dne @) (G500,

i=j+1 i=1

is a sum of two strictly k-zero matrices.

Case 3. Suppose n <k<n, andk ;tnjfor allje {1,..., m—=1} . Then, there exists
aunique je {1,...,m-1}, such that n,> k > n, . Fori>j, we have n,<k, so that
J (0) is k-zero foralli >jand ® _+1.]n (0) is k- zero Fort < j,we have n,>k.Thus,
by Lemma 7, we can write J (O) =A + B, where A, B,e M_ (F) are strictly k-zero.
As in Case 2, we conclude that G—) J, (O) € N(Z)(F)

Case 4. Suppose k = Z. n; for some je{2,...,m}. By Lemma 8, we can write
®r 9, (O) X+Y,where X, Ye M, (F) are strictly k-zero. Note thatk > n, > n,, so that
J (0)i is k-zero for all i =1,..., m. Thus, if j<m, then G—) J .. (0) is k-zero, and

i=j+1

@J ©) —(X(JB@J (O)J (Y@on e )

which is a sum of two strictly k-zero matrices. If j =m, then k=n and Ae N® (F) by
Lemma 8.
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Case 5. Suppose n, <k<n and k#n +n,+..+n forallie {2,.., m}. Then, there exist a

unique positive integer k,and a unique j e {2,..., m—-1}, such thatk = z ' n o+ k,

=1 1
and0<k,<n . letl=3% ' n, sothatk=l+kandl <k < "' Ifj=m-1,
then we are done by Lemma 9.Since n, <k, it must be thatn <k foralli=1, ..,
m,which means that J (0) is k-zero forall i=1,...,m. If j<m-1,then @,TM J, (0)
is k-zero. By Lemma 9, we can write 69,]:11\]" (0) = X+Y,where X, Ye M, (F)are

i j+1
strictly k-zero,and so :
A= [x ° @I, (0))+ (Yoo, ...,)
which is a sum of two strictly k-zero matrices. Since we have exhausted all possible
cases, we conclude that A= @7, J (0) e N@(F) for any integer k with2 <k <n.

Thus far,the matrix A considered in Lemmata 8-10 did not include J, (0) blocks.
The following shows that, when J,(0) blocks are included, then A@0, is a sum of
two strictly k-zero matrices for2 <k <n +r.

Lemma 11. Let Ae M (F) with A=@" J (0)andn, 2n,>.2n 22 Ifrisa
positive integer, then A® 0, e N®(F) for any integer k with 2<k<n+r.

Proof. Let Ae M (F) with A= @T=1Jn. (0)andn, =n,>.>n_>2. Letrbeapositive
integer. Let k be an integer, such that 2 < k<n+r.We consider two cases.

Case 1.Suppose 2<k< n.If we apply Lemmata 8 and 10 to A,we can write A= X+,
where X and Y are strictly k-zero matrices. Thus,we have A® 0 = (X &®0,) + (Y ©0),
which is a sum of two strictly k-zero matrices.

Case 2. Suppose n <k< n+r.Suppose aeF — {0,1}. Then,

m-1
A®O0, = (@ (al,.@Mal)®al, ®al,_,® o,mk]o1

i=1
m-1
+((‘B ((1_ a)lni—l @ [—a])@ (1_ a)lnmfl @ _alkfn @ 0r+n—k]01
i=1
is a sum of two strictly -zero matrices.

We summarize Lemmata 7-11 in the following theorem.

Theorem 12. Let F be a field with at least three elements. If Ae M (F) is nilpotent,
then A eN@(F) forall integers k, such that 2 <k <n.
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Proof. Let A € M (F) be nilpotent. Suppose k is an integer with 2 <k < n. By the
Jordan Canonical Form theorem, A is similar to @i";.]n_(O), wheren >n,>.>n . If
n,= 2,then, by Lemmata 8 and 10, we have &, J. (Oj e N@(F) for any integer k
with 2 <k <n. Otherwise, letj € {1,...,m} be leastI such that nJ =1. Then, for alli
> j, we have n =1. That is, the Jordan Canonical Form of A is @J (O) ®0, —_— By
Lemma 11, we conclude that @ J, (O) ®0,,.,eNP(F) forany mteger k with 2 <k
< n. By Proposition 1(c), A e N(Z)(F) for any integer k with 2 <k <n.

The following example shows that the converse of Theorem 12 does not hold. Let

B = {0 1}. Then, B =J,(0)+J,(0)", but B is not nilpotent. As another example,
10

take A=B ® -Be M,(F). Suppose a, b, x, y e F-{0} . Observe that

=[3,(0) @ (-3,(00)]+[3,(0)" @ (-3,(0)") ],

which is a sum of two strictly square zero matrices. Moreover,

01 0 0 01 00 00 0 O
|to00 0| |00 a O 10-a 0
A=1o00 -1/ oo o0 o|Too o -1/
00-10 00-10 00 0 O

which is a sum of two strictly cube zero matrices, and

010 O 01 -a b 00 a -b
100 O 00 —x - 10 x
A= = y+ y
00 0 -1 00 0 -1 00 0 O
00-10 00 0 O 00-10

which is a sum of two strictly four zero matrices. Therefore, A € N<f)(F) fork=2,3,4,
but A'is not nilpotent, since A is nonsingular.

The remaining results in this section are applications of Corollary 3 and Theorem
12.

Theorem 13. Let F be a field with at least three elements and A e M (F) be a

nonscalar matrix. Then, trA = 0 if and only if A is a sum of two strictly k-zero
matrices and two strictly I-zero matrices for all integers k and [, such that 2<k, 1<n.
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Proof. Let F be a field with at least three elements and A e M _(F) be a nonscalar
matrix. Suppose tr A=0,and kand | are integers, such that 2 <k, I <n. By Corollary 3,
we can write A=X+Y, where X and Y are nilpotent matrices. By Theorem 12, Xe N@ (F)
and Ye N@(F) for any integers k, I, such that 2 <k, I <n. Thus, A is a sum of two
strictly k-zero matrices and two strictly I-zero matrices. The backward implication
follows from Proposition 1(a).

If we take k =1 in Theorem 13, we get the following result.

Corollary 14. Let F be a field with at least three elements and A e M (F) be a
nonscalar matrix. Then, tr A=0if and only if Ae N(F) for all integers k, such
that 2<k<n. In particular,if char(F) =0 and Ae M _(F),then tr A=0 if and only if
Ae N(:)(F) for all integers k, such that 2<k<n.

Corollary 15. Let F be a field with at least three elements and A e M (F) be a
nonscalar matrix. Then, tr A=0 if and only if Ae N® (F) for some integer k, such
that 2<k<n.

Proof. Let F be a field with at least three elements and Ae M_(F) be a nonscalar
matrix. Suppose tr A = 0. By Corollary 3, we can write A= X+ Y,where Xand Y are
nilpotent matrices. Since A#0 , at least one of X and Y is not zero. Suppose X=0,
with index of nilpotence k, where 2 <k <n. By Theorem 12, Ye N®(F) for any
integer |, such that 2<1<n. Choose I =k, so that Ae N9 (F) . The backward implication
follows from Proposition 1(a).

Corollary 16. Let F be a field with at least three elements. If A= Al _with zero
trace, then Ae N® (F) for all integers k, such that 2<k<n.

Proof. Let F be a field with at least three elements. Suppose A= Al _with tr A=0.
Let k be an integer,such that2<k<nand N, e M_(F) be a strictly k-zero matrix.
Note that A—N, is a nonscalar matrix with zero trace. By Corollary 14, it follows
that A—N, e NQ(F). Thus, Ae N® (F) for all integers k, such that2<k<n.

MATRICES OVER THE COMPLEX FIELD

By the discussion after Theorem 6, we know thatN(?(C) c N(23>(C). let0#ae C.
Suppose mand r are positive integers,such that ris not a divisor of 2m. Let
B= —% (m+r), and consider the matrix B = @ |, diag(f8,a)® al, which has
zero trace. By Corollary 14, BeN{(C) forall ke {2,....2m +r}. But, B¢ N®(C) by
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Theorem 5. Thus, we have that N,®(C) < N,*(C) by Proposition 1(e). Combining
this with Corollary 14 gives us the following result.

Corollary 17. The least positive integer m, such that every A € M (C) with zero
trace is a sum of m strictly k-zero matrices for all integers k,such that2<k<nis
m=4.

The following theorem deals with n-by-n matrices which are not expressible as a
sum of two strictly k-zero matrices for some 2 <k <n, but can be augmented so
that it is a sum of two strictly I-zero matrices for2 <1 <n.

Theorem 18.Let Ae M, (C).Suppose k is an integer,such that 2<k <n,and Az N®(C).
Then, there exist a positive integermand B e M, (C), such that A® B e N@ (C) for
all2<1<n.

Proof. Let Ae M (C).Suppose k is an integer, such that 2 <k <n and Az N®(C). By
the Jordan Canonical Form theorem, A is similar to X @ Y, where X € M_(C) is
nonsingular and Y € M_(C) is nilpotent. By Theorem 12, it follows that A is not
nilpotent,which in turn implies that r > 0. Let m be an integer,such that m>r.Then,
m>0andm+s2n. LetB=-X®0,eM_ (C). Then,A®Be M . (C)withtr (A®B)=
0and A® B is similar to (X ®-X) & (Y @ 0,). By Theorem 4, there exist strictly
square zero matrices U, Ve M, (C),such that X®-X=U + V. By Theorem 12, for
any integer |, such that 2<1<n, there exist strictly I-zero matrices M,N,e M_(C),
such that Y®0 =M+ N. Thus, we have

(X®-X)®(Y®0 )=USM @0 _ )+ V&N, @0

m-n+s m—n+s) N

IfweletC=U@®@M®O0 . and D=V ®N®®&0, _ , which are strictly I-zero
matrices, then (X®-X) ® (Y® 0, ) = C+ D. By Proposition 1(d), we conclude that
A ®Be N® for any integer | with2<1<n.

The last theorem concerns diagonalizable n-by-n matrices, which are not expressible
as a sum of three strictly square zero matrices, but can be augmented to form either
a sum of two strictly square zero matrices or a sum of three strictly square zero
matrices.

Theorem 19. Let Ae M_(C) with tr A=0 and assume that A is similar to

(% diag (B.o) ® ol ,
i=1
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where o, e C, o# ,and m and r are positive integers. Suppose Az N®(C).

(@) There is no diagonalizable matrix B with trB=0and o(B) ={¢, 8, such
that A® B e NP(C)-NP(C).

(b) There exist a positive integer s and a matrix Be M,(C),suchthatA®
Be N®(C).

(c) There exist a positive integer tand a matrix C e M,(C), such that
A®Ce NS)(C)—N(ZZ)(C).

Proof. Let Ae M (C) with tr A=0and assume A is similar to
@i@ldiag(a,ﬂ)®alr

where o, Be C, a# B,and mand r are positive integers. Then, a# 0, #0, and
o+ B#0.Suppose Ag N(i)(C). Then, by Theorem 5, r is not a divisor of 2m.

We prove (a). Suppose there s a diagonalizable matrix B with tr B=0and o (B) = {¢, S},
suchthat A® B e N(j)(C)—N(i)(C). We divide the proof into three cases depending
on the algebraic multiplicities of ezand B in B.

Case 1. Suppose the algebraic multiplicity of § exceeds that of in B. Then, there
exist positive integers s and t, such that B is similar to

@iadiag(a, B) @ I, -
By Proposition 1(c), we can assume without loss of generality that

A®B =@ diag (a, B)®al, ® Bl, e N (C)-NP (C).
If r<t,then A®B issimilarto @, diag(a,8)® Bl andt-r divides 2(m+s+r)
by Theorem 5, say 2(m+s+r) = k(t-r) for some positive integer k. Since tr(A @ B)=0,
we have (o+p)(m+s+r) + B(t-r)=0. Hence,

_(__F _
m+s+r—( a+,8j(t r),

and it follows that k = — Zﬁﬂ is a positive integer. Consequently, we have
a+

g = _(k E zja ,and a + f = kZ%. Since tr (A) = 0, we have 0=(a+pS)Mm+ar =

2m
al ——+I|.Since a# 0, we have 2m +r =0, which is a contradiction, since k,
k+2 k+2

m, and r are positive integers.
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If r > t, then the roles of ¢ and 8 in the previous subcase are reversed, and we get
A®B =@ . 'diag(a,f)® al, . Asimilar argument as in the subcase r < t
leads to a contradiction.

Ift=r, then it follows that A® B=@"" " diag(c, B). Since tr (A® B)= (m+s+1) (o + 3) =0,

i=1
it follows that o + =0, which is a contradiction.

Case 2. Suppose the algebraic multiplicity of @ exceeds that of fin B. Then, there
exist positive integers s and t, such that B is similar to

® diag (o, B) ® o 1.
i=1
By Proposition 1(b), we can assume without loss of generality that

A®B= @i'“:;Sdiag (a.p)®al,, e N(zs) ©) _N(zz) ©.

r+t

A similar argument in the previous case leads to a contradiction.

Case 3. Suppose the algebraic multiplicities of @ and S are equal. Then, there
exists a positive integer s, such that B is similar to

@ diag(a, B).

By Proposition 1(c), we can assume without loss of generality that
A®B =@, diag(a, f)®al, eNY(C)-NP(C).

A similar argument in Case 1 leads to a contradiction. Since we have exhausted all
possible cases, we conclude that there is no diagonalizable matrix B withtr B=0
and o (B) = {o, B}, such that A®@B eN(C)-NP(C).

We prove (b). Take B=-A e M (C).By Theorem 4, we conclude that A® B e N?(C).

We prove (c). Let p be a positive integer and B = @/ diag(a,—2a) ®al . Note that
trB =0 and p divides 2p. By Theorem 5,B € N&®(C). Let C= ~A®Be M, (C), where
t=n+3p. Then, we have A®C = A®-A®B. Since NY(C) =N (C), it follows
that A@-A®e NP(C). Since A®-A and B are both elements of N9(C), we conclude
that A@-A®B = A®@Ce NP)(C). By Theorem 4, it follows that A@Ceg NP(C).
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Note that s and B in Theorem 19(b) are not unique, because if NeM_(C) is a nilpotent
matrix, then we can also take B= —A®N. Since p is arbitrary in the proof of Theorem
19(c),we remark that t and B are not unique. Moreover, we can take any B e N&(C)-
N@(C)so that A ® Ce NY(C)-N&(C).
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