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ABSTRACT

This paper establishes the existence and uniquenesss of a weak solution
of a quasilinear parabolic problem in an open set whose boundary is
the union of two disjoint closed surfaces. A Dirichlet condition is
prescribed on the exterior boundary and a Neumann condition on the
interior boundary. The existence of a solution of the parabolic problem
is shown using the Faedo-Galerkin method and some a priori estimates
are established to provide bounds for the solution.
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INTRODUCTION

This paper presents the existence and uniqueness of a solution to a quasilinear
parabolic problem on a domain with holes.More precisely, the domain consists of
opensets O, and O, (representing the hole in O ) with corresponding boundaries T’
and I', . We then form ©=0\0,, OcR" whose boundary is I''UI'.. On [';, we
prescribe a Dirichlet boundary condition, andonTI ,aNeumann boundary condition.
The parabolic system is given by

¥ (x,1)— div(A(x,u)Vu(x,0) = f(x,t) in  Ox(0,T)

u(x,t)=0 on T,x(0,7) 1)
A(x,u)Vu(x, t)-n= g(x,t) on T;x(0,T)
u(x, 0y =u’(x) in O,
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where 4 is a quasilinear matrix field, n is the outward unit normal to O, and
t € R. This problem models heat flow in a perforated cell where the temperature
u is time-dependent. Here, 4 is a constant proper to the material, which represents
the thermal conductivity of the said material, and f can be considered as the heat
source. The second equation in (1) indicates that the material is insulated. For the
third equation, we say that,on the inner boundary, g is the normal component of the
heat flux. The fourth equation means that, at time ¢ = 0, the temperature is given by

u®.

Several studies related to this problem have been previously performed. A more
general problem of the elliptic case was studied by Cabbarubias and Donato (2011).
The solution to a linear parabolic problem in a fixed domain was shown by Cioranescu
and Donato (1999) and Cioranescu et al. (2012), while that for the quasilinear
problem in a fixed domain was considered by (Zeidler,1990). Existence results for
the parabolic problem in a two-component domain with imperfect interface have
been proven by Jose (2009) and for the corresponding elliptic problem by Beltran
(2014tru). Estimates and bounds for solutions of certain quasilinear parabolic partial
differential equations were shown by Trudinger (1968), [keda (1967), and Arima
(1966). Moreover, bounds for solutions of some linear and quasilinear cases were
presented by Cipriani (2001). As shown by Poretta (1999), existence results for
nonlinear parabolic equations can be obtained by proving strong convergence of
truncations of solutions.

In this study, the existence of the weak solution to problem (1) (which is posed in
a perforated domain) is shown using the Faedo-Galerkin method. This method
involves defining an approximate problem in a finite-dimensional space. The partial
differential equation is reduced to an infinite system of ordinary differential
equations. Estimates are obtained and shown to converge to the solution of the
original problem. The Faedo-Galerkin method has been used for parabolic problems
in fixed domains. It was used for the linear case by Cioranescu and Donato (1999)
and Cioranescu et al. (2012) and for the quasilinear case in fixed domain by Zeidler
(1990).

In Section 2, we present the geometric setting and assumptions for the problem.

We also give the variational formulation and the approximate problem. In Section
3, we establish the existence and uniqueness of the weak solution to problem (1).
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PRELIMINARIES

In this section, we discuss the notations and concepts necessary to prove the main
result.

We consider the domain illustrated in Figure 1. Here, O, is an open subset of R”
with boundary and O, is an open subset, such that (’)_lc O, with boundary
r,=00,.Weset © :=0,\0,.Then, 90 =T, ur,andl', n T, = @.

Lo

[

Figure 1. The perforated domain.

We will use the notion of an evolution triple to define the spaces where the
solution of problem (1) exists.

Definition 2.1. Let  be a real separable and reflexive Banach space, B a real,
separable Hilbert space,and ¥’ the dual of V. If the embedding ) — B is continuous,
that is,

HVHBSCHVHV for some c and forall veV,

thenwecall ¥ ¢ B < V' anevolution triple.

It is known that problem (1) does not always have a solution in the space of regular
functions; hence, we introduce suitable spaces where weak solutions for problem
(1) exist.
Let

V={peH (O)|p=00nT} and B=L(O) (2)
with

lelh=IVel,,, - )

Let{w,.w,,...} beabasisof Vand B = span{w,,w,,...}.Clearly, B, ¢ V < B.
Also, observe that IV < B — V' is an evolution triple (see Remark 3.44 of
Cioranescu and Donato (1999)).
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We consider the space given by

W ={ve L*(0,T;V),v e L*(0,T;V "}, (4)

equipped with the norm

e 4
19 b=l 2y, 1 D - 5)

It is known that the space W satisfies the following (see for instance Cioranescu
and Donato (1999), and Cioranescu et al. (2012)):

1. Theinclusion W < C°(0,7; L*(©)) is continuous.
2. Theinclusion W < L*(0,7;L*(0)) is compact.
3. For*andvin W,the following differentiation formula holds:
d ; '
E-[Qu(x,t)v(x,t)dx =(u (';f)ﬂ(';t));ﬂy + (v (':t)vu("t)>rgv-
For problem (1), we make the following assumptions:
H1. Suppose f, g are functions, such that
1. fe L*(0,T;L*(©®)),and
2. ge L*(0,T;L*(T))).

H2. let 4:(x,t)e OxR > A(x,1) = a,(x,1)
satisfying the following conditions:

2
AP - R¥" be a matrix field

1.Foreveryte R, A(,t) e M (a, B,0), thatis,
() (A(x,0)A,4) > a|A[*,and

(i) |[A(x,)A

< B|A|.forany 1 e R ™.
2. Ais a Caratheodory function, that is,
(i) t = A(x,t) iscontinuous for every x € O, and

(iiy x > A(x,t) is measurable forevery t € R.
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H3. There exists a function @w : R — R ,such that
1. w is continuous and nondecreasing, with o(z) > 0 Vz > 0,

2| A(x,z) - A(x,z)) | @(|z-z]),ae. x€ O,z # z ,and

v dz
3.forany ¥y > 0,lim H‘”L 2(2) =+,

To obtain a weak solution to problem (1), we consider its variational formulation in
the appropriate Hilbert space. To get the variational formulation, we multiply the
first equation of (1) by an arbitrary test function v(x) € ¥ and integrate over O,
and by applying Green’s Theorem, one gets

J.Ou’(xaf)v(x)dx+IOA(x,u)Vu(x,t)Vv(x)dx
= [ f(x)v(x)dx + [ g(x,0)v(x)do.

(6)

Hence, solving (1) is equivalent to solving the problem

Find u e W such that

(u'(x,0,v ()., + [ A Vu(x, 0V v(x)dx = [_f(x.0)v(x)dx
+ Ir]g(x,t)v(x)da VveV and te (0,T)

(x.0)= u’(x) in O,

where W is defined in (4).
Problem (6) is called the variational formulation of (1).

We can also show that,if u € C? (5) and u is a solution of (6), then u is a solution
of (1). Indeed, we again apply Green’s Theorem to (6) to obtain

Iou'(x’[)v(x)dx + ZI: J.o %(A(x,u)v u(x,t)),v(x)dx - ng(x,t)v(x)da
= Lgf(x,t)v(x)dx.

From classical results (see Cioranescu and Donato (1999)), u satisfies (1).

Remark 2.2. The above computations show that if the solution u is sufficiently
regular, then the solution of the variational formulation (6) and the solution of

problem (1) are the same, that is, the weak solution is also the solution in the
classical sense.
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To find the solution of problem (6), which is the weak solution of (1), we apply the
Faedo-Galerkin method which is widely used in dealing with parabolic problems
(see for example Cioranescu and Donato (1999) and Cioranescu et al. (2012)). We
construct the approximate problem as follows.

Let P, : B > B, bethe orthogonal projection onto B, given by

P :ve '(O)m Pn(v):Zn(v,w])B,wleBn. 7)

=1
By Proposition 6.19 of Cioranescu et al. (2012),

ul=P (u’) > u’ strongly in I*( O). (8)

The Galerkin equations, which give the approximate problem for (6), are given by

Find u,(x,t)e B, such that
<u;(x,t),v(x)>V,_;, + IOA(x,un)V u,(x,)Vv(x)dx = Iof(x,t)v(x)dx )
+jr g(x,t)v(x)do Vve B, and te (0,T)
1
u,(x,0)=ul(x)in O.

This is equivalent to
Find u,(x,t)= Zc}“(t)wj(x) e L’(0,T;V) such that
Jj=1

j@u,;(x,t)wk(x)dxwL foA(x,un)V u,(x,t)Vw, (x)dx = Iof(x,t)wk(x)dx (10)
+Ir gx,0)w,(x)do Vk=1,.,nand for a.e.t € (0,T),w, eV,
u,(x,0)=ul(x)inO.

which is also equivalent to the following first-order system of ordinary differential
equations:

‘Z’;k (1) + icj(z)joA(x, /Zn::lcj"(t)wj(x))Vlvj(x)Vwk(x)dx = [, S (x.)w, (x)dx

+L_ gx,w, (x)doVk=1,2,..n and forae.te (0,T),w, eV,
1
ul 0)= (u’,w,).

This system admits a unique solution ¢/,...c; on [0,7] (see Zeidler (1990),
p.781). Thus, (10) has a unique solution u, (x,t)e L*(0,T;B,) with
u,(x,t)e LZ(O,T;B”,). Note that, since B, c V < Bc V', it follows that
u, e L*(0,T;V) and ul e I*(0,T;V").
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Remark 2.3. In the discussions that follow, we denote any arbitrary constant
independent of n by C.

MAIN RESULT

This section presents the existence and uniqueness of the solution to problem (6),
as well as the a priori estimates of the solution u, and u,' of the approximate
problem (9). These estimates are shown to converge to the solution of the original
problem. For uniqueness of the solution, we use the method introduced by Chipot
(2009).

First, we show the a priori estimates of the solution u, of problem (10).

Proposition 3.1. Let u, be the solution of problem (9).Then,

where C dependson a, f#,0,and T, butis independent of n.

u, (x’t)HLx 0.7:1%(0)) + |url(x’t)||1‘2(0,’[‘_r) < C’ (11)

Proof. We fix ¢ € [0,7'], multiply (10) by ¢, € C([0,7°]) ,and sum over k from 1
to n to get
[oun (o, (x.0)dx + [ A(x.u,)Vu, (x.00Vu,(x,1)dx

(12)
= jof(x,t)un(x,z)dx + j g(x,0u, (x,0)do.
0

From assumption H2(1), we have

IOA(x,u”)Vu”(x,t)Vuﬂ(x,t)dx > _‘-Oa |Vuﬂ(x,t)|2 dt

2
120y "

a|vu,|

Also, one has

2 dt

2
un(x,t)”LZ(O) = jou;(x,t)un(x,t)dx,

so that
1d
2 dt
< jou;(’x,z)un(x,r)arxJr jOA(x,uw)Vun(x,z)vu”(x,z)dx

= Jof(x,t)un(x,t)dx+ L g(x,Hu,(x,t)do.

2

”"n(x’t)“;(m +a ”Vun(x‘t)“Lz(O)
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Using the Cauchy-Schwarz and Poincaré inequalities, the Trace Theorem, and in

view of (3), it follows that

d ]
0l o, + 20, 50 < CUf D 20, + 8Dl 2 M oDt (13)

where C is a constant independent of ».

Since

u, (.02 0, + IV, (x.0}2 0,

un(x:t)“irl(o) =

and using the Poincaré inequality and (3), we have

TR EP IR E X010

Vun(x,t)”iz

||un(x’l)l|i11(0; -

<C

Vun(x,t)niz(m +

(0)
= C Jlu, O + e, o0

= C |u, (x,2)|

2
v °

forsome C depending on O.

(14)

(15)

. ; . 1
Using n = € i Young's inequality ab < %az + 2—b2 forall n >0, we get
from (13), g
e, ()2, +2 0
7 u,(X,1)] 20, + 2 ||, (x, )],
C 2 a 2
S&"(“f(x”)hl((g)+Hg(x”)|L2(rl>) e u, (%1 0y »

where C is a constant independent of .

Combining (14) and (15) yields

dt

u,,(x,t)||i2(0) +a
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We fix s € [0,7T] and integrate (15) on (0, s) to obtain

u,(x,0)|? dt

u, (x| %, +a |

<

C s 2
u, 2O 0, + = (17 D0, + e a0, )l

2

C s 2 s 2
= ||un(x,0) 12(0) + ;(J.o ”f(x’[)”Lz(O) dt + _[0 Hg(x’l)”ﬁ(rl) dt)

2C ¢s
+ 7.[0 (||f(x"t)”L2((D) ||g(x,t)lle(rl))dt.

This, together with assumption H1 and (8), implies u, € L™ (0,T; L*(O))~ L*(0,T;V)
with

Uy, (.x»[)“f w2y ¥ ””n (x*’)”LZ(o.T:V)
< C( MW(X,O)”,;(O] + ”f(x’t)”LZ(O_T:I,Z(O)) ¥ ”g(x’l)le(O«T«Lz‘rW (16)

-+

]f(x’l)”L2 (0.7:12(0)) ”g(x’t)”LZ(OJ;LZ(rl)))'
Hence, we obtain (11).

Next, we show the a priori estimates of u/ , the derivative of u, , with respect to
time.

Proposition 3.2. Let u, be the solution of (9) with u, its derivative with respect to
time. Then,

(X, 0|2 040 £ C (17)
where Cdependson «a, #,0 and T, but is independent of n.
Proof. Let v e V. From (7),we have

v—P (v)e B and ||Pn(v)|]V < ”va , (18)
then from (9),

(u) (x,0). (), , + _[OA(x,un)Vun(x,t)V(Pn(v(x)))dx
= (u;(x,t),v(x)Lz(o) + _[OA(x,un)Vun(x,t)V(P,7 (v(x)))dx
= (2.0, P, ("), o+ [ A(xou, )V u, (x,0V (P, (v(x)))dx

= [/ GO, (v Gdx + [ g(x.0) P, (v(x)dx.
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Using assumption H2(1), the Cauchy-Schwarz and Poincaré inequalities, (3), and
(18), we obtain

(CHER R W sc(||f(x.,t)
b ﬂ |uﬂ(x’t)||1’ |

R N o [ ACTE
P,(v(x)),

£ [C (Hf(x’t) (o) i+ ”g(x’t) /_3(1‘1))+ 'B “un(x’t) IV )} ||v(x)||, 2
where C is a constant independent of n. It follows that
i e 0 < € (17 D2, + g (o0 ae,, )+ B Nty G0 -

Integrating on [0, 7] with respect to ¢, we have

u:,(x,t')”ﬂ orwvy = c (”f(x’[)”LZ wr:2oyn T ”g(x’z)”l,z(oj,l_z(rl))) (19)
+ B

u"(x’t)”Lz 0Ty
This, together with (11), yields (17).
We now state our main result.

Theorem 3.3. Under assumptions H1-H3, problem (1) has a unique solution u € W .
Moreover, there exists a constant C dependingon a,0 ,T ,such that

”u(x,t)”[;c 0.7:12(0)) + “”(Xa’)”w £C. (20)
Proof. The theorem is established in four steps.
Step 1. Existence of the solution.

By the estimates obtained in Proposition 3.1 and Proposition 3.2, and using Eberlein-
Simuljan Theorem, there exists a subsequence, still denoted by
{u,}e L?(0,T:L*(®)) andu € L*(0.T;V ) L*(0,T; L*(O)) ,such that

(i) u, — u weakly*in  L*(0,T;L*(0O)),
(i) wu, -u weaklyin L*(0,T;V), (21)
(iiiy u, -~ u' weaklyin L*(0,T:V").

Since u, is bounded and W is compactin L? (0, T; L? (0)), then there exists
some U € L*(0,7;L*(©)),such that

u,—> Ustrongly in L* (0, T ; L* (0)).
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From (21)(ii), it follows that

U =u.

Hence,

u, > u strongly in L*(0,T; L*(0)), (22)

and so there exists a subsequence, still denoted by {u,} € L (0,7 ; L’ (©)) ,such
that

u, > u strongly in LI*(O).
Now, since A satisfies H2, we have

A(x,u,) = A(x,u) strongly in L*(O),
so that for every w, € V,

"A(x,u,)Vw, =" A(x.u)Vw, strongly in L}O).
Note also that from (21)(ii),

Vu, ~Vu weaklyin [L*(0,T;V)]".

Hence, by the Lebesgue Dominated Convergence Theorem,

,
lim [, [, ACGeu,)Vu, (x,0)Vw, (x)dxdt

n—w

~tim [ [, A, )V w, (), (x.0)dxd 23)

n— o

J.OTJ‘O/A(x’u)VWk(x)vu(x,l)dxdt

= J.or.[oA(x’”)V”(xaf)VWk(X)dxdt.

Next, let £ be a continuously differentiable function of ¢. Multiplying the approximate
problem (10) by this function and integrating on [0,7 ], we have

[T s (xoyw, ()& ydxde + | [ A(x.u,)Vu, (x.0Vw, (x)E (1) dxdr
0JO 0 JO (24)

= [ foow, ()& @dxdi+ [ [ g(x.0w, (0)E(dodr.

75



On the Solvability of a Quasilinear Parabolic Problem

Passing to the limitas » — o using (21), (22) and (23), we obtain

J‘()TL)”’(X,I)WA»(x)g([)dxdt + J.OT."OA(X,M)VM(-X:[)VWA’(x)é(t)dxdt

= [ f 0w (& @ydxd + jo"jrlg(x,t)wk(x)e:(z)dadr.
Since {w,,w,,...} is abasis for ¥/, then forall v(x) eV,

T ; v
jo (' (x,0),E()v(x)),, dt+ jo joA(x,u)v u(x,)Vv(x)E(t)dxdt

(25)
= [, [of (vnEdxde+ [ [ g(x.0v(x0)éE(dodr,

which shows that « is a solution of (6).
Step 2. Satisfaction of the initial condition.

Now, we show that # satisfies the initial condition #(x,0) = u°(x) .Let £(0) =1
and £(T) = 0. Integrating the first term of (24) by parts with respect to /, we get

_J'Ou,,(x,O)wk(x)dx - j-OTJ.Oun(x,t)ﬁ'(t)wk(x)dxdl
+ J-OTJ.OA(x,un Wu, (x,0)Vw, (x)E(t)dxdt

T I
= jo J'Of(x,t)wk(x)§(t)dxdt+ jo L g(x,. 0w, (x)E(Ddodt.
1
In view of (8) and (22), passing to the limitas » — o in this equation gives

‘J.OT_[O”(XJ)GU(UWA,(x)dxdt - J‘Ouo(x)wk(x)dx
+ .[OTIOA(X’”)V”(XJ)Wk(x)é(t)dxdt

= Jo Jof (oW ()& (D dxdr + J.OTJ‘rlg(xyl)Wk(x)é(f)dO'dt.

Again, forall v € V', we have

[ u(e0E (v dxdt - [ u® (x)v(x)dx
+ IOTIOA(x,u)Vu(x,t)Vv(x)g(z)dxdt (26)

=[] 7 (x.v(x)é (D dxdr + jo"jrlg(x,z)v(x)g(t)dgd,,
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Subtracting this from (25), we get

[[ (0. c@w),, + [, [ux0g @p(ndsdi + [ u’ (xv(nde=0. (27)

On the other hand, differentiating jou(x,t)i(z‘)v(x)dx with respect to ¢, we
obtain

Edt-_[ou(x,t)é‘(t)v(x)dx
= {u'(x,0),E OV (X)), , + (€' (Ov(x)u(x.1).),.,
= <u’(x,t),§(t)v(x)>y,>l, + jou(x,t)é’(t)v(x)dx.

Integrating this equation with respect to rover [0, T], we obtain
r ; § T !
_[0 jou(x,t)f (H)v(x)dx + IO <u (x,z),f(t)v(x)%,,y = —.[Ou(x,O)v(x)dx.
This, together with (27), gives
0 —
Jou (x)v(x)dx jou(x,O)v(x)dx
and hence, 4°(x) = u(x,0) ,which implies that u satisfies (6).
Step 3. A priori estimates on u.

From (21), we have

“u(x, t)“ﬁc 0.7:12(0)) = “fqnjilf u,(x, t)“I?C 0.1:12(0))

[l (x| ,2 070 < diminf fu, G020
“u,(‘x’t)||L2(()_]'J”) < liI;rLiilf u, ('x’l)“LZ(U‘T_l") :

Using (16) and (19), we obtain

Hu(x’[)”ﬁ o120y T “”(x’t)”w

u,,(x,O)”Lz(o) + Hf(x’t)“LZ(O,T:LZM))) + “g(x’t)”LZ(OATJ,Z(Fl)))

< clim (
n—
e ”f(x’t)”l,z(l)_’l':Lz(O)) “g(x’t)“Lz(UAT:Lz(l'l))
< C(H“0“L2(o> i “f(x’l)“L2 or2oy t “g(x’t)“LZ(OAT.LZ(l"l))

+ Ilf(x’l‘)“L2 0.7:12(0)) llg(x’t)“Lzm,r;Lz(rl)))

(28)

which gives (20).
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Step 4. Uniqueness of the solution.

We now show the uniqueness of the solution of (6). We follow the procedure
introduced by Chipot (2009) (see also Cabarrubias and Donato (2011)).

Suppose u, and u, are solutions of (6). Without loss of generality, we can assume
that u/(x,7) —u;(x,2) 2 0 a.e. Then forevery v(x) eV,

Ioul’(x,t)v(x)dx + J.OA(x,ul)V u, (x,t)Vv(x)dx

= [ fenvndx + [ g(x.0v(x)do

and
St xanvndx + [ AGeu,)Va, (x.0)V(x)dx

= jof(x,l)v(x)dx+ng(x,t)v(x)a’a.
It follows that
[l ety () + [ A u)Vu (x.0)Vv(x)dx
= [us (et (x)dx + [ AGe 1)V, (x.0)Vv(x)dx,
which can be rewritten as
J Ll (xo) = ul (x, 0w (x)dx + [ A u)Vu, (x, )V v(x)dx
= [, A(x.u)Vu, (x,6)Vr(x)dx. (29)

Let & > 0. As in Chipot (2009), we define

x dz
— if x=9,
Fa‘(x) = J.s a)z(z) i x (30)
0 otherwise.

where @ (z) is given in H3. Note that F;(x) is a continuous C' function, such that

1

F!(x)|£——

| F5(x) | 2 (3)

for all x > &. It follows from classical results (see Corollary 2.15 of Chipot
(2009)) that F;(u, —u,) €V and

)

V(Fd(ul_uz)): Fél(ul_uz)v(u1_uz)- (31)

We set
E:[ul—uz>5]:={xe(’)[(ul—u2)(x)>5}.
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Taking v = F;(u, —u,) in(29) as test function and subtracting
J.@A(x,ul)VquFd (v, —u,)dx

on both sides of (29), we get
.[o(u{ —u'YFy(u, —u,)dx + J.O/I(x,ul)V(u1 - u,)VFs(u, —u,)dx (32)

= —jo[A(x,ul)— A(x,u,))IVu,VF;(u, — u,)dx.

From our assumption on u; —u; and F, ,we have the first term of (32) positive so

that
J‘OA(x,ul)V(ul —u,)\VFs(u, —u,)dx
< —J-O[A(x,ul)— A(x,uy) IV u,V Fy(u, — u,)dx.

This, together with (30) and (31), yields
1

V(u, —u,)V(u, —u,)dx
(Ml - uz)

J.EA(x,ul) P
1

——Vu,V(u, - u,)dx.
o (u, —u,)

< = [ [A(xu) = A(x.u,)]
We follow similar computations as in Cabarrubias and Donato (2011).

Using H2(1),H3(2),and the Cauchy-Schwarz inequality, we have

a| RACET TN
£ coz(ul—uz)

1 v
< [ ACxu)— V (u, —u, )V (u, —u,)dx
w

(uy,—uy)

S—JE[A(x,uI)—A(x,uZ)] 1

mv qu(ul - uz)dx.

S'[ |A(x,u1)—A(x,u7)\|Vu2 Hv(ul_u7)|dx
E

o’ (u, — u,)
2
dx]

V —
< LN RACTLINI S
£ o(u,—u,)

(v o) ]

(ST

V(u, —u,)
o(u, —u,)
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It follows that

2
- V(u, —u,) V(u, —u,)

< Vs llz,,,

o(u, —u,)

12 (E) a)(ul_uz) L2(E)‘
which implies
V(u, —u,)
—1 - <c|Vu,|2,, <cl|Vu,l|,:,, <C,
o(u, =) oMy < eIVl (33)

for some c and C independent of ¢ . Next, we set

[ i ys (34)
G;(y) =179 a(s)
0 otherwise.

Again, from classical results (see Corollary 2.15 of Chipot (2009)),
Gs(u,—u,)eV and

V(Gs(uy~uy))=Gi(u, —uy)V(u, —u,). (35)
Using this in (33) yields
IG5 (uy = u), =V (Gy(u=u))|,2, < C-

Hence, there exists a sequence {5, }, which convergesto 0 as k¥ — 4+ and G €V,
such that up to a subsequence,

Gb.k(ul—uz): G weaklyin vV,

G5k(ul—u2)—> G stronglyin L’ (0),

Gék(ul—uz)—>G ae.in 0.
It follows that,as k£ > +o ,

limGys (4, —u,)(x) <+, ae.inO.
5,0 k

But the definition in (34) implies that

(up—uqy ) x) d
lim G, (u, —u,)(x) = 1im [ 2
5 0

50 5, —>0% ¢k w(s)
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This implies that m(E) = 0 ,thatis,
u, —u, <0.

Reversing the roles of u, and u, ,we get u; = u, .
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