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ABSTRACT

We prove the differentiability of a group homomorphism¢&: 0@4) — PSp(2)
from the real orthogonal group O@4)into the projective symplectic group
PSp (2), where was constructed by Canlubo and Reyes (2012). We describe
higher dimensional analogs of & For n > 2, we consider a stereographic
projection I:S"" — R” from the unit sphere S "~ ontoR"™" = R"™" U {eo}.
Applying Mobius transformations andIT, we embed the real orthogonal
group O(n) into a projective subgroup PSL, (I},_;)of Vahlen matrices, where

I, is the Clifford group of the Clifford algebra Ci(n)of dimension 2",
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The Real Orthogonal Group and Vahlen Matrices

INTRODUCTION

Many students of mathematics are introduced to Mobius geometry by studying
the linear fractional transformation F (x) = (ax + b)(cx + d)*, where x belongs to

N b
the extended complex planeC = C U {x}, and 4 = (a d] has complex entries
C

satisfying ad —bc =1. The Mobius transformation F, is orientation preserving,
and is a product of an even number of inversions about circles or reflections about
lines (Beardon 1983). The field of complex numbers may be enlarged to the real
algebra of quaternions, and the quaternions may be further enlarged to a real Clifford
algebra, and so on. There are natural Euclidean subspaces that sit inside the real
Clifford algebras (see Section 6). We adopt the same notation F, to denote pseudo
linear fractional transformations that are defined on the extended Euclidean
subspaces of these real Clifford algebras. The real Clifford algebras have
applications to the study of Mébius transformations on Euclidean spaces (Ahlfors
1985; Waterman 1993).

Let n>2 be an integer. Let R" be the n-dimensional Euclidean space. Let
R" = R" U{x} be the extended Euclidean space. Let GM(R") denote the group
generated by inversions about (n-1)-dimensional spheres, and reflections about
hyperplanes in Ii"(see Mobus Transformations). The elements of GM(IQ") are
called Mébius transformations of R", and GM(ﬁ") is the group of Mdbius
transformations of R" .

Let S"" ={xeR" :|x| =1} be the unit sphere centered at the origin, and let GM (§"™)

denote the subgroup of Mobius transformations of R” that leave the sphere s

invariant. LetTI:S"" — R"" be a stereographic projection from the sphere §"*

onto R"" that satisfies M(x,,..0x) = (- x,)(x,,..., x,,) ifx, #1. We consider the

induced group homomorphism I : GM(S™") = GM(R"") given by TT'(f) =Tle f oIl
n-1

foreach f e GM(S" ). Notice that the real orthogonal group O(n) is a subgroup
of GM (S™). We analyze the restriction of IT to O(n).

The special case n=4 is analyzed by Canlubo and Reyes (2012). We identify R*with
the space of real quaternions, such that (x,,x,,x,,x,) € Ris paired with the real
quaternion x, + x,i+ x, j+ x,k . The subspace R’is identified with the space of pure
quaternions, and the unit sphere s%is the group of unit quaternions. For the
stereographic projection, let TI(x,.x,,x,x,)=(1-x,)"(x,x,,x,) if x,#1. In the study
by Canlubo and Reyes (2012), if f € O(4), it is shown that I[T*(f) = F, , where F,
(the same notation used earlier but in a different context) is a quaternionic linear
fractional transformation that is defined on the extended space of pure quaternions,
and 4 is some matrix in the symplectic group Sp(2).
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Furthermore, let PSp(2) = Sp(2) {*1,}. Let [4] be the coset of 4 € Sp(2) in PSp(2).
Canlubo and Reyes (2012) prove that the mapping & :0(4) — PSp(2) defined by
&(f) =[4] is a well-defined injective group homomorphism (see Quaternions and
Rigid Motions). The first main result of this paper shows that is a differentiable
mapping (see The Differentiability of ). We also evaluate a matrix representation
for the differential d¢of & at the tangent space of the identity or Lie algebra of
O(4) (see The Differentiability of 4&).

Let n>2. We describe higher dimensional analogs of the homomorphism
£:0(4) - PSp(2). The framework for our calculations is the Clifford algebra CI(n),
which is generated by the usual basis e,....e, of R, such that ef =-1and
ee, =—epe, if i=j. The field of complex numbers is CI(1), and the algebra
of real quaternions is CI(2).

n+l

We identify R" with a subspace of CI(n)having the usual basis e,....e . Let V' "be
the subspace of (i(n) thatisspannedbyl, and e,,...,e. Let T be the multiplicative
group generated by the nonzero vectors in V"™, We consider 2-by-2 matrices 4 whose
nonzero entries lie in T, and the entries are subject to additional restrictions that
include a nonzero real pseudo determinant for 4 (see Section 6). These matrices
A are called Vahlen matrices, and they form a multiplicative group GL,(T,) (Ahlfors
1985; Waterman 1993). Let SL, (T, ) be the subgroup of GL,(T,) that consists of
Vahlen matrices, where the pseudo determinants are all equal to one. If n=1,
GL,(I}) consists of 2-by-2 nonsingular complex matrices whose determinants are
real.

We apply the Poincaré extension of a Mobius transformation ¢ of R’ (Beardon
1983). The Poincaré extension ¢“* is a M&ébius transformation of R" where the
restriction of ¢ to R"is 4. In connection to other fields, the upper half-space
of FA?M, wherex, , >0, isa model for hyperbolic geometry, and ¢ isan isometry
of this geometry (Beardon 1983). In this paper, we realize ¢™ as a Mébius
transformation of V" = 7" U{ex}, where the restriction of 9™ to R" is 4.

We recall the stereographic projection TI(x,,....x )=(1-x, ) *(x,,....x, ), x #I.
We show that if f € O(n), then the Mdbius transformation 1" (f) of R™ may
be rewritten as a pseudo linear fractional transformation ' (f) = F, for some
A€ SL,(T,,) (see discussion before Theorem 11 in Section 7). Let PSL,(T )=
SL,(T )/{*1,},and let [4] denote the coset in PSL,(T,,) that is defined by [4].
We describe our second main result. We show that there is a well-defined injective

group homomorphism &, : O(n) - PSL, (T, ,) satisfying &, (f) =[4] (Theorem 11).
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The mapping &, isan analog in higher dimensions (but not a generalization) of the
mapping & that :Nas obtained in the quaternionic case by Canlubo and Reyes (2012).
The reason that we do not have a generalization is because certain quaternionic
matrices that define the quaternionic linear fractional transformations are not Vahlen
matrices (see details after the proof of Theorem 11).

In Section 8, we evaluate the left and right eigenvalues of some Vahlen matrices.
Beardon (1983) and Lawson (2010) describe related works on Mdbius geometry
and Clifford algebras. General references for quaternions are described by Coxeter
(1946),Koecher and Remmert (1991),and Conway and Smith (2003).

QUATERNIONS AND RIGID MOTIONS

Let H be the algebra of quaternions x = x, + x i+x,j+x,k where x x,x,x,€ R
and i'=j’=k’=ijk= -1.The conjugate of xis X = x, —x,i-x,j—x,k, and the norm
ofx is |x| = /x. +x' +x, +x..One checks that |x|2 =xx and (xy) = yx . Thus, the
norm is multiplicative, that is,|xy| = |x||y| for everyx,y e H. If |x| =1, then we say
that x is a unit quaternion. We denote the set of unit quaternions by S°. If x,y € S3,
thenxy € S° We write Re(x) = x, for the real part of x. If x, =0, then we say that
X is a pure quaternion. We let H'be the real space of all pure quaternions. If

X = x,i+ x, j+ Xk € H, then one checks that x° = —xf —xzZ —x3Z . Notice that H and

R* are isomorphic real vector spaces. The usual inner-product in R*is
Re(xy) = x,y, + Xy, +X,¥, + X, V.. (1).
Notice that xy + yx = 2Re(xy).

A rigid motion on H is a bijection f:H > H, satisfying|f(x)—f(w)| = |x—w| for
all x,w e H. Rigid motions of H have been characterized by Coxeter (1946). Let g
be arigid motion on H. If g(0) = 0, theng is a real linear mapping (that is, for every
s,t € R and every x,we H,we have g(sx +tw) = sg(x) +tg(w). Let G be the group
of rigid motions of H that fix the origin (that is, £(0) = 0,and every f € G is also
called an orthogonal linear map). Then, G is isomorphic to the real orthogonal
matrix group O(4). Let f € G be given. There exist a,b e S’such that either f(x) = axb
or f(x)=axb. Let ce H and let s be arigid motion. If #(0) = ¢, then & may be
expressed as the composition 4° f of arigid motion f e G that fixes the origin
and the translation 4(x) = x+c.
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Let y e S° be given.For each x e H, let fy (x) = —yxy.Then, fy(y) = -y, isareal
linear mapping on H, and f}, €G. Let p € H be given. Notice thatpy +}p = 2Re(py) =0,
if and only if p = —ypy. Thus, if Re(py) =0,then fy(p) = p. In this case, we say
that 7, is areflectionin H about the hyperplane perpendicular toy. One checks
that fy(fv‘,(x)) =x foreveryx e H,thatis f, isits own inverse. Also, we may rewrite
the reflection f, as follows: f (x) = x—2Re(xy)y.

The following (cf. Theorem 9.1 of Coxeter (1946)) characterizes the rigid motions
of H, which fix the origin and are products of two or four reflections.

Theorem 1. Let p,qeS be unit quaternions and let o, f €R be given. Set
a = coso+psino and b = cosB+qgsinf. Consider the rigid motion of H given by

B, (x)=axbxeH (2).

let ¥V ={xeH:pxqg=-x} and W ={x e H: pxq = x}. Then, V' and W are B_,-in-
variant orthogonal subspaces with respect to the inner-product (1) and V @ W = H.
The restriction of B, toV is a rotation through the angle « + f, and the restriction
of B  toW is arotation through the angle a — . Moreover, a matrix representation
of the real linear mapping B, of H is the block matrix (cos(a +p) —sin(a+ ,6'))
cos(a — ) —sin(a - p) sin(e+ B) cos(a+ f)

(sin(a—ﬁ) cos(a — B) j Conversely, any orientation preserving rigid motion
of Hthat fixes the origin has the form (2) for some basis.

Some details of the proof of Theorem 1 are given in The Differentiability of &.
The subgroup G, of the orientation preserving transformations in G is

G,={B,,:abe Ss} (3).
The group SO(4) = {4 € O(4): Det(4) =1}is isomorphic to G,. Let M,(H) be the

set of all 2-by-2 matrices with entries in H. We denote by H’ the space of column
vectors (vl,vz)T, where v,,v, € H. Consider the symplectic scalar product in H’

given by
<(v1’v2)z'l(wl’ W2)7-> =Wy Wy, (4).
Let p,,, Py Py P,, €H be given and let P=(p“ p“jeMz(H)- Matrix multiplication
p21 pZZ

% PV, + P,V
by P induces a right H-linear mapping of H?: P( 1) :( noTe 2)-

vZ levl + p22v2
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Let Sp(2) be the set of all P € M,(H), such that (Pv, Pw) = (v,w)forall v,we H?

Then, Sp(2) is a group under usual matrix multiplication: if P = (p“ plz) and
le p22

+ +
0= 9: 92 |, then PQ= (p“q“ Pofa Pute ™ Pota ) The order of the
q21 q22 p21q11 + p22q21 p21q12 + p22q22

multiplication of the entries in PO matters since multiplication of quaternions is
not commutative. We say that Sp(2) is a symplectic group. We let P" denote the
conjugate transpose of P.

Lemma 2. Let P e M,(H) be given. Then, P € Sp(2) if and only if P'P=1.

Proof. Let P e M,(H) be given. Let ¢, = (1,0)T and e, = (0,1)T. For i,j =12, the
symplectic scalar product (4) satisfies (Pe,, Pe,) = p, . p,. + P,,;P,,- Now, the (i, j)
entry of PP is (Pe,,Pe). If PeSp(2), then (Pe,, Pe,) = (e, e),sothat P'P=].
Conversely, suppose P'P=1. Let v= (vl,vz)T and w= (wl,wz)Tbe in H’. Since P

2
defines a right H-linear mapping on Hz, we have (Pv, Pw) = Z((Pei)vi,(Pej )wj>
i

= iW,(Pei,Pe/) v, = (v,w).Thus, P e Sp(2) .
2V

Let H = H’ U{w}. Let M:5° - A be the stereographic projection given by
[(x) = (L-x,) (X i+X j+x,k) , if x=x,+xi+x,j+xk#k and TI(k) = . Notice
that II is the restriction to S° of the inversion in I = H U{x} about the sphere
centered at £ and of radius \/E (Beardon 1983). Let y € S°be given and let f, be
the reflection about the hyperplane in H that is perpendicular to,, Set f, (o0) = 0.
Then, ITo 7, o1 " is a Mobius transformation of A" The mapping is expressed as
a quaternionic linear fractional transformation as follows. Let y=p + gi+ rj+ y, ke s°
where p,q,r,y, eR. Set ¥, = pi+qj+rk,and consider

m(y) =¥ s( % y2) e M,(H) (5).

T2 N

One checks that Y'Y = I, so that Lemma 2 guarantees that Y € Sp(2) . Moreover,

ylz =—p'—¢° —r, sothat (m(y))? = Y2 = -I. We associate a quaternionic linear

fractional transformation F, on H' by

~

F(x)= (yx+y,)(~yx+7) ", xeH (6)
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(Canlubo and Reyes 2012). Here, we have F, (x) = if-yx+y =0, and
if y, # 0. Moreover, by Theorem 1.2 of Canlubo and Reyes (2012), we have

F, =T f, oll” 7).

Let PSp(2) = Sp(2)/(£I) be a projective symplectic group. Let [Y]e PSp(2) denote
the coset containing Y. In The Differentiability of & and in the proof of Theorem 3.2
of Canlubo and Reyes (2012), the authors show that the corresponence
f, = [Y] extends to a well-defined mapping

E:G—> PSp(2) (8),

which is an injective group homomorphism. If 4 € G, then there exist y",...,3" € S}
such that 4 = fym 0.0 fym (thatis,4 is a product of reflections). Hence, we have
E(A) = [mG")--m(G"")]- In the next section, we shall prove that £ is differentiable.
By knowing that ¢ is differentiable, we will be able to know the action of the
differential d¢ at the Lie algebra level (see The Differential 4 &).

THE DIFFERENTIABILITY OF &

The operator norm of a real linear endomorphism 4 of H is |A| = sup{IAx| Ix € SS}.
op
We derive an inequality for the orientation-preserving rigid motions B_, in equation

(2).

Lemma 3. Let ag,b e S’ and let §>0 be given. Suppose that Re(a) = Re(b). Then,

is a product of two reflections (Coxeter 1946). If |Bab —1| <&’ then ‘a—l|<5
: o

or |a+1‘< J.

Proof. If Re(a) = Re(b) and |a| = ‘b| then there exists p € S3, such that ap = pb
(Lemma 2.2 of Coxeter (1946)). Set z=ap, sothat a=zp, b= pz,and

B, (x)= axb = zpxpz = f. o fp (x). 9)
Then, B , is a product of two reflections.

Since a reflection is its own inverse, the product of two reflections is the identity
mapping, if and only if the two reflections are equal, that is, ifand only if ap =z = +p.
Thus, B , =1, ifand only if ¢ = b = +I, and the second claim is true if B, =1
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Suppose B, # I. The product f, ° f, of two reflections is a rotation in the two-
dimensional subspace P spanned by p and z. The angle of rotation @ is twice the
angle between z and p, where cos(d/2) = Re(zp) = Re(a).

Consider the triangle in Figure 1 with sides p and apb. Suppose that the vertex of
the triangle at the intersection of sides p and apb is the origin in H. Then the
included angle between p and apb is 6, and ap bisects 6. Since f, o /, is a rotation,
the length of the side of the triangle opposite angle # is the operator norm |Bu,b —II

op
By the cosine law,we find |5, —1| = 2(—cos0) = 4(1—cos’ (0/2)) = [2(1-Re(a))]
=1, =2 .

2

[20+ Re(@)] =[a~1]a+1". Since|s,, -1

< 52, we have|a—1|< ) or|a+]1< 0.

op

Figure 1. Side ap bisects the angle at O.

The results described in Lemma 3 are based on the assumption that Re(a) = Re(b),
where a,b € S3. However, for the proof of Theorem 4 below, we need an analysis
of B, ,, where we do not necessarily assume Re(a) = Re(b). The analysis of B_,
we need can be found in the proof of Theorem 9.1 of Coxeter (1946). Coxeter
shows B, may be rewritten as a product of two rotations as in (12), where possibly
one of the rotations is the identity transformation. We describe Coxeter’s proof of
(12) because the technique used in his proof is applied again in Theorem 4. We
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begin with the polar form (Coxeter 1946), and we write a = coso+psino, where p is
a pure unit quaternion. Since p? = -1, we have

e” =cost+ psint, for every te R (10).

Notice that ¢”™ = p. De Moivre’s theorem ensures that
p' = (") = cos(tr2) + psin(taf2). (11).

Thus, we obtain a = p“/”. Similarly, we have b =cos S+ ¢sin f for some pure
unit quaternion g and some 3 € R. Likewise, we obtain b = qw”. Lemma 3 guarantees
that Bp,yq, is a rotation in the real 2-dimensional subspaceV ={x e H: pxq = —x}
through the angle tn. Notice also that B,,uyﬂ is a rotation in the subspace
W ={xeH: pxg =x} throughtheangleun, foranyu e R.Choose u,t e R,such that
(u+t)r =2a and(t —u)z =24 .Then,

(12).

Moreover, H=V @ W is an orthogonal real direct sum; that is, if x, e V,x, e W,
then Re(x,x,) = - Re(px,qqx,p) = —Re(px,x,p) = —Re(x,x,), and Re(x,x,)=0. Let
Pz, es’ satisfy z, = pp, = p)q. By Lemma 3, we have Bp,q, :fz1 ofpl. Then
B, , is the identity mapping when restricted to W for fz1 °fm(x2) =2z,p,X,D,Z, =

P9

PP\P,X,D,2, = X,qP,Z, = X,

Similarly, Bp,,q,,, is the identity mapping when restricted to V. Then, the restrictions

of B,, and B, . to Vare identical, and the restrictions of B, to B, , to Ware
v P v P9

identical. Consequently, the operator norm satisfies

B -1

a,b

B, _
P

-1

} (13).

We note a special case Re(a) = Re(b), if and only if Bp, e 1 oeru —_ I.We are
now ready to prove the differentiability of &.

’
op

= max{‘B =1
P q

op op

Theorem 4. The group homomorphism ¢&:G — PSp(2) is differentiable.

Proof . Since & is a group homomorphism, it suffices to prove continuity at the
identity I (Proposition 3.12 of Brocker and Dieck (1985)). Note, the subgroup G, in
equation (3) is isomorphic to SO(4) , an open subset of G that contains I. Therefore,
it is without loss of generality that we restrict §to G, .
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Since the group multiplication in PSp(2) is continuous, there are open neighborhoods
V and W of [I] in PSp[2], such that v? ={v,v, 1v,,v, eV} W. Consider the
quotient group Sgl{il}. If ye S let [vle Ssl{il} be the coset defined by y. The
quotient topology in SSI{J_rl} is equivalent to the topology defined by the metric
of Becker and Kechris (1996): d([x],[y]) = min{x — | |x + »[}.

We recall the mapping m : S*— Sp(2), such that m(y) =Y in equation (5). Then,
minduces a continuous mapping 7: S /{+1} - PSp(2), such that n([y]) =[¥].
Since the continuity of group multiplication on the compact group S® implies uniform
continuity, there exists & > 0, such that [X][Y]! € V whenever d([x],[y]<d and

n(x1)=[X].

Now, let a,be S* satisfy |Bub —I| <s’ Applying equation (12), B , is a product of
, o ,

two rotations B , = Bp, . onu - for some u,te R, and pure unit quaternions p,q.

Furthermore, each rotation is a product of two reflections. As in equation (9),

there are unit quaternions w,w,e §* satisfying the following: Bp, e f,,fwl ofwland

Bpu’qfu = fpllwz Ofw .

Notice that Re(p?) = Re(q) by equation (11), and that |p'| =1= |q'|. Moreover, since
|Bab —1| < &% by identity (13), we have B, ~1| < 5.

op op

Applying Lemma 3 to the above inequality we obtain |p' —1| <J or |p' +l| <J.
The metric on Ssl{il} satisfies d([pr],[l])<§. Since the norm is multi-
plicative,we have d([p'wl],[wl] < 4. Similarly, d([p“wz],[wz])< d. Consequently,

[m(p w)llm(w)I ™, [m(p" w)lIm(w,)] " € V.

Recall that, for all ye S3, we have (m(y))? = -1, so that (m(y))* = m(y). Since
V2 < W, we obtain

[m(p'w,)1[m(w,)][m(p" w,)llm(w,)] € W. (14)
On thelother hand, we also have 5(Ba,b) = é(Bp,’q, o Bpw,,, ) = cf( g © f”1 o fp,,v2 o fwz)
= [m(p W )im(w Iim(p w)lm(w,)l. Thus, £(B,,) € W whenever |5, 1| <&,
. } o
and hence, § is continuous at the identity 7.

We compute the differential of &.
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THE DIFFERENTIAL d§

We describe the Lie algebra g, of the Lie group G, in equation (3). The underlying
set of the Lie algebra g, is the set of tangent vectors at the identity of G,. A
standard procedure is to consider the surjective group homomorphism

B:S'xS" > G, (15)

defined by B(a,b) = B 1, where as before,B  ,(x) = axb ™ foreachxe H. Itis
known that the Lie algebra of $¢ is the algebra H" of pure quaternions. Let exp: H"— S°
be the exponential mapping defined by exp(w) = e for everyw e H*. Fort € R, we

tw

y W -
=cos(t|wl|)+—sin(¢|w]) and i e” =w - Now,
[w] dt
we evaluate the differential dB of B at the identity. The commutative diagram
(Figure 2) below explains the calculation of dB that follows.

have (see equation (10)) e

t=0

Let w,,w, € H" be given.The tangent vector to the differentiable curve ¢ =1— B(e™1,e™2)
in §°x §* at¢=0is (w,,w,). Now,dB(w,w,) is the tangent vector to the curve
t=+> B(e™,e™2) in G at¢=0. Hence, the differential dB:H xH" — g is a Lie

d w t
algebra homomorphism that satisfies dB(w,, w,) = — B(e Te WZ)

dt t=0
In particular, dB(w,,w,) is a real linear mapping of H. In fact, the image of x e H
under dB(w,w,) is denoted and defined by

d tw —tw;
dB(w,, w,)(x) = — [e *xe 2]= WX — XW, (16).
dt t=0
B
S3x 83— G
exp exp

H** H* ———
B 9o

Figure 2. Commutative diagram for the calculation of dB
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Let gI/(H) denote the Lie algebra of all real linear mappings of H into itself. Since
the kernel of B is {£(1,1)}, the differential dB is a Lie algebra isomorphism. In
particular, the Lie algebra of G is g, = {dB(wl,wz) tw,w, € H*}c gl(H). Moreover,
g,and H" x H'are isomorphic Lie algebras.

awl2

Since e
in the following canonical real basis for the vector space H x H:

T
8=~ {6.0), (7.0), (k,0), ©.), (0.), 0.0},

= w whenever w is a pure unit quaternion, we introduce an extra factor

Since dB is areal linear isomorphism, the following is a real basis for g, :
B' = {dB(Wl,Wz) S(w,w,) € B}.

Let P:Sp(2) > PSp(2) be the projection mapping given by P(Y) =[Y]. Since PSp(2)
is the quotient group of Sp(2) by a discrete group {£/}, the Lie algebras of PSp(2)
and Sp(2) are the same. Then PSp(2) and Sp(2) are locally isomorphic Lie groups (by
Theorem 1.11 of Helgason (1978)). Hence, there exists an open neighborhood U of
Iin Sp(2), such that (i) P(U) is an open subset of [I] in PSp(2), (ii) the restriction
P|u :U — P(U) is a diffeomorphism, and (iii) P|u is a local homomorphism, that is,
if x, x, xx,eU, then P(xx,) = P(x,)P(x,).

Let P|;l denote the inverse function of P|U. Let &£ : G —» PSp(2) be the differentiable
homo[norphism in Theorem 4. Then, &7 (P(U)) is an open subset qlf G. Let
v & (PU)) — Sp(2) be the differentiable mapping defined by w(x) = (P| b ° E)(x),
where x € cf’l(P(U)).We evaluate the differential dw of y at the elements of B
The Lie algebra 3 of Sp(2) consists of 2-by-2 quaternionic matrices u satisfying
u+u" =0. Forinstance, by equations (16) and (11), we find

dy(ab(310)) = dw(—

d d
Bi’ T
=0 dt|,.

dt

Applying equation (12), we express B, as a product of two rotations. Each
rotation is a product of reflections (see equation (9)). Then, B‘,,’1 = B‘,,,zli,,2 o B‘,,,ZJ,,,2 =
fuofiofi, ?lf e £ (P(U)) for sufficiently small values of t. Since—7 ¢ U, we
find B, =P, ([B“]) for small values of t. Since  is a local homomorphism, we

obtain
V4 d
dy| dBl —i0 | |=—
2 dt

(m("™ym@)m " kym(k) ) (17)

=0
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Tt Tt

i€0s — + jsin — 0
However, by applying equation (5) we find m(i"*) = 4 4 ] ,
T T
0 —iC0S— —jsin—
.t t 4 4
—ksin — cos —
and m(i"k) = 4 4
wt . owt
fcos—ksm—
4
7r 11
Applying the product rule to equation (17), we obtain dy| dB —10 11)
2 4

Furthermore, by the chainrule, dy = d P| o d&. Thus, we obtain and use the indicated

)
notation: dc,{dB(%i,Ojj dP(—k j= o

Similarly, by evaluating dy at the other elements of B, we find the following:

i) d

O
Q,
s3]

I
<
[=}

—

I
&
S

/N
NG
.
TN
R
e
~—
N
Il
|
R

(i) dé dB zk,oj

(iii) dg dB O,ﬁijJ:dP(zk( 1_1D5f6,
2 4 \-11

() de] dB o,fjjj:dp[fj( l_ljjffs,and
2 4\-11

) dé dB o,ka: dP[ﬁi( 1_1DE £
2 4\-11

Using the ordered bases B, and {flfzfsﬁ,fsfe} for the domain and range of
d&  respectively, we obtain a matrix representation for the differential d&.

Theorem 5. If we realize d£as a real linear isomorphism onto its image, then a matrix

0 01 001
representation for d¢ is the following block matrix matrix(d£) =|{ 0 =1 0 |®| 0 1 0 |
1 00 100

Moreover, the eigenvalues of d¢ are {#1,+1,+1}, counting multiplicities.
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MOBIUS TRANSFORMATIONS

In order to describe the higher dimensional analogues of £ , as described in (8),
we describe additional elementary prerequisites. We determine the kernel of
the group homomorphism IT in (20) that is induced by the stereographic
projection m:s"* - Ii”’l, as defined in this section. The kernel described in
Lemma 6 is needed to complete the proof of our second main result, namely,

Theorem 11 in Embedding the Orthogonal Group O(n).

We review general facts about Mébius transformations (Beardon 1983). Let n > 2
be a given integer. Let e, € R"be the unit vector with 1 in the ith position and 0
elsewhere, so that £ ={e ,...,e }is the standard basis for R". Let x = (xl,...,xn)r,
y= (yl,...,yn)r e R" be given. The standard bilinear form on R"is

n
K(x,y)= Elx,'y,' (18)

Notice that |x|2= K(x,x). If x#0,we let x' :|x|72 x. Let ¢eR" and a nonzero
y € R" be given. The hyperplane in R"containing c and perpendicular to y is
H (c,y)={xe R":K(x,y)=0}+c={xeR":K(x—c,y) =0}

The reflection 7, about H, (c, y) is the homeomorphism of R" = R" U{w} satisfying
r,(x) = x—2K(x—c,y)yT,x eR", and (o) =oo.

Notice that 7 (y+c¢) =-y+c andthat 7z (x) =x every xe H (c,»). The sphere
in R" centered at ¢ and with radius » > 0 is given by S (c,r) ={x e R"{x—c|=r}

The inversion ¢ in S, (c,7) is the homeomorphism of R" satisfying o(x) =c+r2(x—c)*,
if x#c¢, and o(c) = .

n-1 n-1 Sn-1

Let ¥ =5 (01),and let T1:S —R"" be the stereographic projection defined
by TI(x) = (1—x”)7l(x1,...,xH), x, #1, and Il(e,) = .

The inversion ¢, in S, (en,\/g) is special because the restriction of ¢, to R™ is
the inverse of the stereographic projection I1, that is,

(%) = ¢,(3,0)% eR"” (19)
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(Beardon 1983). Recall, GM(@") is the group of Mdbius transformations of Ifi", and
GM(SH) is the subgroup of Mébius transformations of R” that leave the unit
sphere S invariant. The group homomorphism

n-1

M :GM(S"") > GM(R"™) (20)
given by II'(f) = Hofol‘[’l,where fe GM(SH), is well-defined because of
equation (19) and because the finite product of Mdbius transformations is a Mobius
transformation. We denote any identity mapping by 1.

Lemma 6. Let ¢ be the inversion in S"'. Then,the kernel of H*is{l,qﬁl}. Moreover,
s surjective.

Proof. If T1°(f) = Ion R"", then f =1 is the identity mapping on S"". The only
two Mobius transformations in GM(IQ") that restrict to the identity mapping on
S""are the inversion @ in $""and the identity mapping on R" Thus, the kernel
of " is{7,4}.

We show that IT" is surjective.Let ¢ e GM(FAQH) be given. We apply the Poincaré
extension ¢” € GM(R") of ¢ satisfying ¢ (%,0) = (4(3),0) for every ¥ eR""
(Beardon 1983). We recall the inversion ¢, in S (e ,V2).The restriction of 4, to
S"tis the stereographic projection IT that maps $"* onto R"™. Since ¢ leaves
Ii"_linvariant, we find ¢ ¢ ¢, € GM(S ). Applying equation (19), we obtain
T (4,6 ,)(F) = TG, 6" 411 (%) = 114,64, (%.0) = Th,¢™ (¥,0) since ¢; = I. More-
over, Ig,¢™ (¥,0) = [14,(4(x),0) = ¢(x¥) by applying equation (19) again. Hence,
1" (4,6'¢,) = ¢ and I is surjective.

ext n-1

ext

VAHLEN MATRICES

The linear fractional transformations on the extended complex plane are well-
defined because any two complex numbers may be multiplied. Similarly, we may
define pseudo linear fractional transformations on R”, since there is an intrinsic
multiplication operation in R". In fact, there is a natural embedding of R” into a real
Clifford algebra, where R” inherits the multiplication of the real Clifford algebra.
We identify R"as in (21). Also,there is a natural (n+1)-dimensional Euclidean space
V"*1sitting inside the real Clifford algebra as in (23) that contains R”. We return to
our study of the Mdbius transformations ¢ of R". We may extend ¢ to a Mobius

" n+l n+l

transformation of V"" = V" U{w} by applying the Poincaré extension of ¢. Then,
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we apply the results of Ahlfors (1985) and Waterman (1993) to show that ¢ is the
restriction to R” of some pseudo linear fractional transformation that is defined
on V" (see Lemma 8). The pseudo linear fractional transformations are defined
by Vahlen matrices.

We review general facts about Vahlen matrices (Ahlfors 1985). Let Cl(n) be the
real Clifford algebra generated by {e,...,e } subject to ei2 =-1 andee, = -ee,
if i#j. For 1<k<n,consider J={j,....j7.}c{l,....n}, where j <...<j .
Consider the product e, = e, e, and if J=0, set e, =¢, =1. The collection

{e, :J c{1,...,n}} is a basis for the real vector space Ci(n). We identify R” with the
following subspace of Cl(n):

n
R" = {Za,.e,_ ta, e R}cCl(n) (21).
=AU
The product of x,y € R" satisfies
xy+ yx = 2K (x, y) (22).

Let e, =e, ---e, be a basis element of Cl(n). There are three main involutions in
Cl(n). The grade involution is an algebra automorphism of Cl/(n) that is denoted
and satisfies e, = (fl)ke}.1 ---e, The conjugation is an algebra antiautomorphism
of Cl(n) that is denoted and satisfies E*J = (—l)kejk ---e/.l.The reversio*n isan alg*ebra
antiautomorphism of Cl(n) satisfying e, Se, e, . One checks that (e, ) = (e,) =e,
forevery J ={j,,....,j, = {1,....,n}.

For an integer k >1, define the sum s(k) =1+---+k, andset s(0)=0. If k>0,
let B(k) = (-1)'“ and set B(-1) =1. We list some basic properties of e, without
proof. The proof of statement 5 follows immediately from Theorem 2 of Waterman
(1993).

Lemma 7. Let J c {1,...,n} be given. Let k =#J be the number of elements in J.
Let e=¢ ---e bethe product of all thee for1<i<n.If xe R",then

() e =pk-Ye,, & =pke,,
(i) e =pk), e, =1,

(iii) exe = =p(n-1)x,
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(iv) ex=(-1)""xe, and
(v) if aeCl(n) and ax = xa forall xeR",then a e R.

Let

pT = {ia;fe./ -4, € R}CCl(n) o

n+. . . . . . —. 2
If v= Zﬁoajej eV™ and v=0 ,the multiplicative inverse of vis v t= \7/|v| . Let
I be the multiplicative group generated by the nonzero vectors in V™. We say
that ' is the Clifford group of C/(n). AVahlen matrix is a 2-by-2 matrix

a b
N

where a,b,cd e, U{0} for which ab’, ¢d’, ¢" a, d"b € V", and such that the
pseudo-determinant Der, satisfies Det (4) =ad —bc" e R—{0}. Let GL,(T,) be
the multiplicative group of all Vahlen matrices. If 4,Be GL,(I')), then
Det (AB) =Det (A)Det (B), where the matrix multiplication is the usual one
(equation (32)). Let SL,(I",)={4e€ GL,(T')):Det (4)=1}. Then, SL,(T")) is a
subgroup of GL,(T").

Let V" = V" U{w}. AVahlen matrix 4 € GL,(T,) induces a bijection F, of V"*
into itself defined by

"+l

FA(V):(av+b)(cv+d)71,veV (25).

We say that F, is a pseudo-Llinear fractional transformation of V™. One checks that
F,F,=F,k, forevery4,BeGL,(T,). Furthermore,FF = F, , ifand only if 4 = aB
for some nonzero o € R. In such a case, we write 4 ~ B. Notice that ~ is an
equivalence relation on GL,(T,).For 4 e GL,(T,) let [4] denote the equivalence
class of 4 under ~. Let PGL,(T,)) = {[A] tAde GLZ(F”)} be a projective group of
Vahlen matrices, and let PSL,(T,) = {[A] ‘Ae SLZ(F”)} .

Let GM (V"™
group generated by inversions about n-dimensional spheres and reflections about

) denote the group of Mdbius transformations of V", that is, the

" n+l ", n+l

hyperplanes inV"". Let M (V") denote the subgroup of orientation preserving
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", n+l

Mdébius transformations of V™. For n21, the mapping [4]+— F, defines the
group isomorphism (Theorem B of Ahlfors (1985); Theorem 5 of Waterman (1993))
in

", n+l

PSL(T)) - M(V"™). (26)

Notice that for even n>2,the mappingx+ —x isanorientation reversing orthogonal
transformation of V"* and the mapping [4] — F, defines a group isomorphism (Ahlfors
1985; Waterman 1993) in

PGL,(T)) » GM(V"") (27).

We continue to identify R" as the subspace of v according to equation (21). We
prove that every Mébius transformation of R" can be expressed as the restriction
to R" of a pseudo-linear fractional transformation F of V"™ asin (25).

Lemma 8. Let ¢ be a Mdbius transformation of R". Then, there exists a Vahlen
matrix 4 € GL,(T',), such that the restriction of the corresponding pseudo linear
fractional transformation F, satisfies F,|., = ¢.

ext

Proof. We regard the Poincaré extension ¢ of ¢ as a Mdbius transformation of
V"™ satisfying ¢m| , =¢. For even n=2, there exists 4 GL,(T,), such that

ﬁl
F, = ¢ because of the isomorphism (27). For odd n > I, if ¢*" is orientation
preserving, thenfF, = ¢“’ for some 4 e SL,(T',) by the isomorphism (26); and if

¢ is orientation reversing, let ¢™* = ¢, 9", where ¢,is the reflection about
H(0,¢,) in V", and notice that¢«*is an orientation preserving Mobius transformation

"+l ext2 _ =
of V"™, so that ¢"* = F, for some 4eSL, () and F,|., = 4.

Since R" < V"™, we may extend an orthogonal transformation ¢ of R* to an
orthogonal transformation ¢« of V" such that ¢m|R,, = ¢. There are exactly two
orthogonal extensions ¢ of ¢ : with one extension orientation preserving and the
other orientation reversing. Moreover, either ¢<(I) =1 or ¢<(1) = -1.

If ye R" with |y| =1 and if ¢ is the reflection about the hyperplane H(0,y), then

y

0
P(x) = x = 2K (x,y)y = yxy = F,|_, > where x € R" and V:(O )GSLZ(F,,) Notice
-y

that F, is an orientation preserving orthogonal transformation of V"** by isomorphism
(26),but F, w is orientation reversing. Moreover, by the Cartan-Diedonne theorem,
any orthogonal transformation y of R” (being a product of reflections) may

0
be expressedas y = F, i forsome W = (}(/) Aj e SL,(I' ) . We describe another
specific case of Lemma 8. 4
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Lemma9. Let ¢ GM(IQ") be the indicated Mobius transformation. There exists
A€ GL,(T)) that induces a pseudo linear fractional transformation F, satisfying

¢:FA|;§"'

-1
(i) If ¢ is the inversion in Sn(en,\/g) ,then 4= (eln ) )

—e

n

\ 0
(if) If ¢ is the reflection about #,(0,v) ,ve R ,and |y =1, then 4 = ((v) )
-V

Proof. The proof of the second statement is in the discussion prior to Lemma 9.To
prove the first statement, let y(x) = \/5x+e” , and let ¢ be the inversion in §"".
The inversion ¢, in S (en,\E) satisfies g, =wog w ' (Beardon 1983). Thus, the

product of the Vahlen matrices fory, ¢,, and y' is the Vahlen matrix (\/E e J(O _lj

0 1 A1 0
1 —e e -1
= » which is the matrix in the first statement.
0 V2 ) \1 —

EMBEDDING THE ORTHOGONAL GROUP O(n)

Let ¢, be the inversion in S”(e”,\/a),and let

e -1
)

be as in Statement 1 of Lemma 9. Then, ¢, = FV0 o Since ¢, =4¢,, the inverse
of the Vahlen matrix ¥ satisfies FVO_1 =FV0 and ¢, = F T

=) .
0| o

Given f e GM(SH), there exists a Vahlen matrix 4 € GL,(T)), such that f(x) = F,(x)
for every x e R’ (see Lemma 8). Applying the group homomorphism (20) induced
by stereographic projection, and equation (19), we obtain II'(f) = Hofol‘[’l =
bolos o fob| s = F,

047y

-l 1

This leads us to inner-conjugate the Vahlen matrices in Statement 2 of Lemma 9 by
V,. We present the results without proof. The calculations are straightforward

. 4 1f - 1
since V0 = " .
2\ -1 e,
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Lemma 10. If i =1,---,n -1, then the following Vahlen matrices lie in SL (T ,):

(i) Vo(e’ 0)%1{_6" Oj
0 —e 0 e

i Vo(e” 0 j%1=(o —1).
0 —e 10

Foreach v=2lae, € S"" let f' € 0(n) denote the reflection about the hyper-
plane H (0,v) . We may express I (f") asapseudo-Llinear fractional transformation.

h _ v 0 -4
gt Where V=Vl 7,

Applying Lemmata 9 and 10, we obtain TT' (/") = F,
e SL,(T ).
Now, define the mapping m, ORI SL,(T,,),where m,(v) = V. Notice that v* = -1

andthat =-I,. Let 4" denote the conjugate transpose of a Vahlen matrix 4={a, }.
Here, the (i, j)-entry of 4" is @,,. One checks that IJ; =)}, =2 , so that vV =vv=I.

For iefl,....k}, let v, € S""be a unit vector and let m,(v,) = ¥,. If the product of
reflections satisfy f*...s* = and the identity mapping on R",then H*(f’i--f”‘)zlﬂ.

- v b
However,we have I (f* - f*)=F, a1 s Where W=V .1, =(j d)eSLz(l"“)-

Then, (ax+ b)(cx + d)’1 = x for every xe Iﬂe”’l.Taking x =0,we obtain »=0. Looking
at the (1,1) entries of the equality WW” = I, we have aa =1; looking at the (2,1)
entries, we have ¢z =0, so that ¢ = 0; and looking at the (2,2) entries, we get dd =1.
Now, ad” = Detv(W) =landwe have d ' =a =4 . Notice that (ax+b)(cx + d)'=x
becomes (ax) (d)'=x ,thatis, ax=xd . Hence, we have ax = xa for each xe R". Since
aeT,  cCl(n-1) ,Statement 5 of Lemma 7 guarantees that ae R. Consequently,
a=d=xland W =4I,

Theorem 11. If A€ O(n) and if A= f™ - f™ is a product of reflections, then the
mapping
£, :0(n) > PSL,(T,,) (29)

given by ‘fen (4) =[m (v,)---m (v,)] is an injective group homomorphism.

Proof. The discussion before Theorem 11 shows that the group homomorphism
(29) is well-defined. It suffices to show that the group homomorphism (29) is
injective. Let A= f"---f* be a product of reflections, and let B=f"---f" with
we s for each j=1,..., L. Suppose 62,, 4= §Fn (B). Let each W= m(w/,) e PSL,(T ,).
Since &, (B) =[W,---W,]1, we obtain V,---V, = W, ---W,, so that F, ., =F,., and
IT (4) =TT (B).
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Recall that the kernel of the group homomorphism I1" is {7, ¢1}, where ¢, is the
inversion in $"* (see Lemma 6).Since 4B is a real linear mapping in the kernel of
IT", we conclude that 4 = B. Hence, 5@,, isinjective.

The homomorphism (29) is a higher dimensional analogue but not a generalization
of the homomorphism & in (8). In fact, when n =4, ¢, does not reduce to Easin (8),
since the quaternionic matrices in (5) are not necessarily Vahlen matrices. More-
over, the pseudo determinant of m(y) in (5) is not necessarily a real number for

Det (m(y))=p®+q°~r*+y,2+2rqi-2prj.

We compare Theorem 11 with well-known facts studied by many math students.
First, if z,is a complex number with modulus |z0| =1, then multiplication by z,
defines a rotation f; (z) = z,z in the complex plane that leaves the group (isomorphic
to S*) of complex numbers with modulus 1 invariant. Let z € S* be a square root
of z,. Then, the diagonal complex matrix 4, =diag(zl,z171) is a Vahlen matrix in
SL,(I) that defines a linear fractional transformation FAusatisfying FAuz fo- Next,
we may identify the sets $? (which is not a group) and $® with the set of pure unit
quaternions and the group of unit quaternions, respectively. If w,eS%is a unit
quaternion, then the mapping g,(w) = w,ww,,w € S%is an orientation-preserving
orthogonal transformation that leaves S? invariant. Conversely, any orthogonal
transformation of R® (identified with the set of pure quaternions) that leaves §?
invariant is of the form g, (Theorem 3.3 of Coxeter (1946)).

In Theorem 11, the homomorphism & depends on the stereographic projection IL
Suppose that we change Il to another ;tereographic projection.We claim that there
is an injective group homomorphism from O(n) into a subgroup of PSL,(T" ) that is
inner-conjugate to PSL,(T", ). Notice that, by an application of the Poincaré extension,
each Mobius transformation in GM(I%H) is the restriction to R"" of some Mé&bius
transformation in GM(R ). Moreover, for any hyperplane H c R", there is a Mobius
transformation pin GM(R ) that maps R onto H=HuU {00} Let GM(H) be the
group of Mobius transformations of H generated by inversions in spheres in H of
dimension n — 2 and reflections in hyperplanes of H. Then, we may associate a
Maébius transformation ¢ of H to a Mébius transformation p~t¢p of R by inner-
conjugation. A bijection of R"is a M8bius transformation if and only if the bijection
preserves cross ratios (cf. Theorem 3.2.7 of Beardon (1983)). Thus, each Mébius
transformation in GM(I:|) is the restriction to H of some Mébius transformation in
GM(R").
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Let se S, and let w be the inversion in the sphere S(s,\/g) c R".Then, y, maps
the unit sphere S** onto the hyperplane I:I, perpendicular to s, that is, if xe S"* and
x#s,then K(y (x),s)=0. The restriction of y, to the unit sphere S"*' is a
stereographic projection, andy/ mducesagroup homomorphism l//s GM(SH) —>GM(I:|5),
such that if /e GM(S""), we define v (f)=v, ofow, |H By Lemma 7, we have
f=F,

F, is the pseudo linear fractional transformation of V" defined by 4. Using a proof

" lan and y, =F, o where 4,D are Vahlen matrlces with entries in r, nd

DADl

similar to Statement 1 of Lemma 9, we can show that D—(l j Hence, v, (F)

Let T =y _ og, where ¢, is the inversion in the sphere S(en,\/g).Then,B =DV, is
a Vahlen matrix for the pseudo linear fractional transformation that defines T.

0) .
For each ve S"1, we obtam[D{ )D } [BV ( )(BVol) 1}Psg(r”).smce
-V

the homomorphism 5 in equation (29) is a function, the relation & : O(n) — PSL(T’))

v 0 -
satisfying & () = [D(; jD l:| extends to a well-defined group homomorphism.
-V

Thus, by changing the stereographic projection Il =g =y, | tO another
stereographic projection l//s|S”'1 ,the images of & _and ¢ are subgroups of PSL,(T,)
that are inner-conjugate to each other.

LINEAR MAPS ON CLIFFORD ALGEBRAS

We study 2-by-2 matrices with entries in a real Clifford algebra Ci(n). We discuss
an analog of real orthogonal matrices and call these Cl(n)-orthogonal matrices.
Moreover,we discuss the eigenvalues of such 2-by-2 matrices with entries in Cl(n).

The bilinear form (18) in R" extends to the Clifford algebra CI(n) as follows:
(zaje,rzb e ): ?’,b,,,where a,b, eR ,and the sum is indexed over all subsets

N .
J c{1,...,n}. The norm satisfies |Z,ajej| =Ya’ =K(Za,e, Yae, )‘. Let CI(n)?

denote the set of column vectors (v ,vz)Twhere v,,v, €Cl(n). Let K be a bilinear

form on defined by K(Z)((:l),(::l) = K(v,w)+K(v,,w,).
2 2

48



B. Kunwor et al.

Let gl,(n) denote the set of all 2-by-2 matrices with entries in Cl(n). For each

X = (xll xl?) e gl,(n),define a right Cl(n)-linear map on C/(n)® where

21 22
(xu X5 )(‘ﬁ) - (xn‘ﬁ + x12V2) (3 0).
x21 x22 vZ x21v1 + x22v2
The composite of two linear maps and is given by their matrix product
XY = (xu Fi2 )(yn yu) - (xnyu T XYy XYt xlzyzzj (31)
x21 x22 y21 y22 x21y11 + x22y21 x21y12 + x22y22

Then, gl,(n) is a group under matrix multiplication. The collection{e, : J ={1,...,n}}
is an orthonormal basis for C/(n) and satisfies

K(e,a,e b) = K(a,b) = K(ae,,be,) (32)
for all a,b eCl(n).

Let X" denote the conjugate transpose of the matrix X = {xu} .Here, the (i,j)-entry of
X'is X, . Applying equation (32) and component-wise matrix multiplication, we
find that X"is the adjoint of X, that is K (Xv, w) = K® (v, X 'w), for all v, w €Cl(n)".
We say that X is Cl(n)-orthogonal if K (xv,w) = K9 (v, X" w) for all v,weCl(n)®.
Notice that Xis Cl(n)-orthogonal, if and only if (the matrix products)XX" = X' X = /.

Let ve R?, v| =1, and let e = e e be the product of the standard basis elements

of R". Then the following three matrices are Cl(n)-orthogonal matrices:

(v 0 (0 (-1)"e 1 (—1)"+1een (-1)"e
A_(O —VJ'B_(e 0 )’C_\/E( e —ee, )

In addition to the Vahlen matrices in Lemma 9, we claim that B and C induce pseudo
linear fractional transformations whose restrictions to R” are the inversions ¢, and
¢,in the spheres § (0,1) and S, (en,\/g), respectively. Let x € R" be nonzero. Then
F,(x) = (-1)"e(ex)™. By Lemma 7, we obtain (ex) " = f(n)x e, and F, (x) = (-1)""

,[7’(n)exe/|x|2 = x/|)c|2 = ¢, (x).
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The proof that C induces ¢ is similar to the proof of Statement 1 of Lemma 9.
Let w(x) = \/Ex+en . Then, ¢//¢1¢//‘1 is the inversion in S (en,\E) (Beardon 1983).
Consequently, the product of the Vahlen matrices for ://,¢1,://71 is a Vahlen for

the inversionin S (e ,\/E): (\/E enJ(O (_1)”6)(1 _e”J:((—l)Meen (—1)”ej.
o 0 1 \e 0 0 \/E e —ee,

We multiply the factor 1/\5 to the Vahlen matrix in the right side to guarantee that
ccr=1.

We say X is positive semidefinite if K?(Xxv,v)>0 for every v eCl(n)(z).We write
X =0 if Xis positive semidefinite. For every Xe g/ (n),we have XX*>0 and X’X> 0.

n 2
For >0, the matrix for the inversionin § (0,7) 20 can be written as (O (—1)0r e) =
e

2 n
rm 0)0 (1) e
0 1 N\e 0 and resembles the polar decomposition of real matrices, that
is,a product of a positive semidefinite matrix and an orthogonal matrix in gl,(n) .

In discussing eigenvalues, we use the quadratic norm A(a) = @a, a €Cl(n). Notice
2

that it is not necessarily true that aa = |a| ;if a=ee,+e,,then aa =2(1-eeLe,).
2

However, if ve V"1, then A(v) =w = |v| . We restrict and choose the nonzero

eigenvalues and the nonzero components of eigenvectors from the set N ={a eCl(n):

0+ A(a) € R}.

Because I, is the multiplicative group generated by the nonzero vectors in V"', we
have T’ < N'. It is known that A(ab) = A(a)A(b) for a,b e N*(Proposition 5.7.2 of
Garling (2011)). Moreover, if a € N',then 4,4 ,@a< N  and |a|2 = Aa) = Aa) =
A(a’) = A@)-

Let X € gl,(n) be given. Suppose that v,,v, e N = N" {0} are not both zero. Let
A e n be given.We saythat v=(v,, vz)ris an eigenvector of X with right eigenvalue
A if X = vA; v is an eigenvector of X with left eigenvalue A if X =Av. If v is an
eigenvector of 4 with right eigenvalue A,and if y € N*, then notice that vy is also
an eigenvector of 4 with right eigenvalue yAy* because

A(vy™) = vy = vyt dy™) (33).

If 4is the Vahlen matrix in (24), we claim thatev+d el’, U{0} for anyve V"'
In fact, if ¢ 20, then cv+d =c(v+c d) el’, u{0}; while if ¢ =0, clearly cv+d €I,
If the corresponding pseudo linear fractional transformation satisfies 7 ,(v)=v,then
a standard calculation shows that (v,1)” is an eigenvector of 4 with right eigenvalue
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cv+d. In particular,Vahlen matrices for inversions and reflections have eigenvectors
since they have fixed points. A good discussion of the eigenvalues of quaternionic
matrices is discussed by Zhang (2007).

Lemma 12. let A e N,r>0,andve R"withv=0.

n 2
(i) If Aisaleftorright eigenvalue of 4 = (0 (_1)0r ej , then |/1| =r.
e

4

0
(i) Then,\is a left eigenvalue of B:(; ) if and only if A =tv. Moreover,

Ais aright eigenvalue of B, if and only if A =tbvb*for some nonzero b € N.

Proof. Let v=(v1,v2)r be an eigenvector of 4 with right eigenvalue A. Then,
(:(—1)”rzevz,ev1)‘T =( VA, vzﬂ)T. Notice that A,v, and v, are each nonzero, otherwise
A=v, =v,=0,and v is not an eigenvector. We recall the function 8 from Lemma 7.
Since e = B(n)e, we findv,(-1)"r* = (-1)"r’v, = B(n)ev,A = Bn)v, X =v,B(n)X.
Then, (=1)" % = B(n)*. Hence, |/1|4 = A" =AY = AGT) = 7" 50 that|4] = r. A
similar calculation shows that, if A is a left eigenvalue, then 4| = r.

Notice that (1,0)"and (0,1)" are eigenvectors of B with left eigenvalues v and -,
respectively. Moreover,A = 0 is neither a left nor a right eigenvalue of B. Let Ae N~
be a left eigenvalue of B with eigenvector (x,)”. Then, (vx,—w) = B(x, )" = A(x, )"
Ifx#0,thenv=Aandy=0;ify#0,thenv=-Aandx=0.

Let A" be aright eigenvalue of B corresponding to the eigenvector w = (wl,wz)r,
that is, suppose Bw = wA”. Then, (vwl,—vwz)r = (w, A, w,A). Ifw, #0,then A'=—w tvw,.
Either w,= 0 or A’=—w,vw,. If w,= 0,then w, # 0 and A’=-w,'vw,. Conversely, if a
nonzero b € N is given, then A=—bvbis a right eigenvalue of B corresponding to
the eigenvector w= (b7%,0)” while A=—bvbis a right eigenvalue of B corresponding
to the eigenvector w= (0, b7).

For the matrix 4 in Lemma 12, suppose » is odd, x € R”, and |x| =r.Applying
Statement 4 of Lemma 7, we find that ex is a left and a right eigenvalue of 4 with
eigenvector (x, 1)”.Thus,if n is odd, 4 has infinitely many left eigenvalues,which
is a partial answer to an analogous question raised for quaternionic matrices in
(Question 5.1 of Zhang (2007)). In Statement 2 of Lemma 12, the set of right
eigenvalues of B consists of either one or two distinct orbits in N under inner-
conjugation. We compare this with Corollary 5.2 of Zhang (2007), where a general
n-by- n quaternionic matrix has exactly n distinct such orbits.
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FINAL REMARKS

We proved that the mapping £ in (8) is a differentiable function between Lie groups.
We determined a matrix representation of the differential d¢ of £.In Theorem 11,
we described a higher dimensional analog &, of &. Our methods involved M&bius
transformations, real Clifford algebras,Vahlen matrices,and pseudo linear fractional
transformations. We also discussed linear maps defined by 2-by-2 matrices with
entries in a real Clifford algebra, and evaluated some eigenvalues of such matrices.

We conjecture that the homomorphsim & : O(n) = PSL(T ,)in Theorem 11 is continuous.
Moreover, it would be interesting to determine the eigenvalues of an arbitrary 2-
by-2 matrix with entries in a Clifford algebra.
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