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ABSTRACT

Let F be a f ield. It is a classical result in linear algebra that for each

)(, FnMPA   such that P is nonsingular, tr A = tr (PAP -1) . We show in

this paper that the preceding property does not hold true if F is the

division ring of real quaternions.  We show that the only quaternion

matrices that have their trace invariant under unitary similarity are

Hermitian matrices, and that the only matrices that have their trace

invariant under similarity are real scalar matrices.
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LAYMAN’S ABSTRACT

We consider a classical result in linear algebra concerning the trace of

matrices with complex entries and we determine whether this result

holds true for the set of quaternion matrices.

INTRODUCTION

The trace of a square matrix A, )( Atr , is the sum of the diagonal entries of A. If the

entries of A come from the f ield C of complex numbers, then )( Atr is a linear

functional and is used to def ine the inner product (A, B) = tr (B*A) on M
n
(C). Trace

is studied in the literature in different contexts. Heunen and Horsman (2013) studied

the trace in relation to orthogonality of vectors. Xiang et al. (2013) provided trace

minimizing properties of certain positive semidef inite matrices. Mckee and Yatsyna

(2014) studied the trace of connected integer symmetric matrices. Wang and Zhu

(2013) studied the trace of elements of modular groups. The trace is also of

particular interest in Terwilliger algebras (Kang et al. 2004; Nomura and Terwilliger

2006).
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group under multiplication. Like in the complex case, we say that two

matrices )(, HnMBA    are (quaternion) similar if there exists a nonsingular  such

that  PAP -1 = B .

Let  A ∈ M
n
 (H)  and write  A=  A

1
 + A

2  
j ,  where  A

1
, A

2  
∈ M

n  
 (C).  The  complex

partition of A (Zhang 1997) is  the  2n-by-2n  complex  matrix    .

The complex partition of A, also called the complex adjoint of A, is used to prove
that if A, B ∈ M

n
 (H), then AB = I if and only if BA = I (Zhang 1997). The complex

partition is also used in the study of the numerical range in quaternionic Hilbert

spaces (Au-Yeung 1984).  We observe that                                                         .  Zhang

(1997) has identif ied the following (Theorem 4.2 (2) and (5)).

Proposition 1.  Let A, B ∈ M
n
 (H).  Then  χ

A
χ

B 
= χ

AB
 .  Moreover,  if  A  is non-singular,

then χ
A
 is nonsingular and (χ

A
)-1 = χ

A-1 .

Let E
ij
 ∈ M

n 
 (H)

 
be the matrix having 1 as its (i, j)-entry and zero for the other

entries.

Let  U
n  

denote  the  set  of  all  n-by-n  unitary  quaternion matrices, that is, matrices

U ∈ M
n
 (H) satisfying UU* = I

n
 .  A matrix A ∈ M

n
 (H) is said to be nilpotent if there

exists a positive integer m such that Am = 0.

Let a, b ∈ H. We say that a is similar to b if there exists a nonzero x ∈ H such that

xax-1 = b.  Observe that xy ≠ yx in general, but xy is always similar to yx (if at least

one of x or y is 0, then xy = yx;  otherwise, y(xy)-1 = yx;  and that xax-1= a  for all

nonzero x ∈ H if and only if a ∈ R. Let A ∈ M
n 
 (H) and x ∈ Hn be nonzero. If Ax = xλ

(Ax = λx) for some λ ∈ H, then we say that λ is a right (left) eigenvalue of A.  We

observe that since multiplication in H is not commutative, the left and right

eigenvalues of A may be different.  In this paper, we call the right eigenvalues of A

the eigenvalues of A. It is easy to see that similar quaternion matrices have the

same set of eigenvalues.  In particular, it is known that an n-by-n quaternion matrix

has exactly n complex eigenvalues. We call these the standard eigenvalues of A. It

is also known that all other eigenvalues of A are similar to the standard eigenvalues

of A (Zhang 1997). Thus, if the standard eigenvalues of A are real, then the

eigenvalues of A are the standard eigenvalues of A.  We denote by σ (A) the

collection of all eigenvalues of A.

Zhang (1997) has outlined the other properties of H  and M
n
 (H).









 12

21=
AA

AA
A

)(2=11= AtrReAtrAtrAtr 
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Trace Invariance Under Similarity

We study the trace of a matrix over the ring of quaternions. We begin with the

following.

Remark 2.  There exist A, B ∈  M
n
 (H )  and nonsingular P ∈  M

n
 (H )  such that

PAP -1 = B  and tr (A) ≠ tr (B).

We give the following as an example.  If                              and                           ,  then

We ask when is it possible for the trace to be invariant under similarity or what

properties of the trace in the complex case are still applicable to the quaternion

case. We start with the following proposition.

Proposition 3. For each A, P ∈ M
n
 (H) with P nonsingular, Re (tr (A)) = Re (tr (PAP-1)).

Proof. Let A, P ∈ M
n
 (H) such that P is nonsingular and B = PAP-1. Note that tr (χ

A
)=

2Re(tr(A)) and  tr (χ
B
) = 2Re(tr(PAP-1)).  By Proposition 1

               .  Hence tr (χ
B
) = tr (χ

A
) and so Re(tr(A)) = Re(tr(PAP-1)).

The following corollary is a consequence of Proposition 3 and the fact that if

A∈  M
n
 (H) is Hermitian (A* = A), then (tr (A) ∈ R. We recall that for A, B ∈  M

n
 (H),

(AB)* = B* A* and so the set of Hermitian quaternion matrices is closed under

unitary similarity.

Corollary 4.  Let A∈ M
n
 (H) be Hermitian. Then tr (Α) = tr(UAU-1) for all U ∈  U

n
.

We ask if the converse of Corollary 4 is true. Before we answer that, we observe the

following.

Proposition 5. Let A∈ M
n
 (H).  If for every U ∈  U

n 
,  tr (Α) = tr(UAU-1), then the

diagonal entries of A are real.

Proof. Let A = [a
ij
] ∈  M

n
 (H).  Suppose for all U ∈  U

n 
, tr (Α) = tr(UAU-1).  Suppose

that Raa pp =  for some  p ∈{1,...,n},  then there exists ν ∈ H such that ν aν-1 ≠ a.

Moreover we can take ν  to have modulus 1 so that  =1 . We then consider WAW-1,

where W is the unitary diagonal matrix having v as its pth diagonal entry, and 1 as

its other diagonal entries. We see that tr (WBW -1) =  tr (B) - a + vav -1 ≠ tr (B),

which is a contradiction. Therefore all diagonal entries of A are real.

B
k

i
A

k

i
=

0

0

0

0




























 k

k
A

0

0
= 











k

k
B

0

0
=

   . Thus A  is (unitarily) similar to B but  tr A = 0 ≠ −2k = trB.

UaEUtr rr =))(( 1 

1

11 ===


 PAPPAPPAPB 
1

11 ===


 PAPPAPPAPB 
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If  D = diag  (d
1
,d

2
,....,dn) ,  then                             .  Thus,  the  following holds by

Lemma 10.

Corollary 11. For each diagonal  D ∈ M
n 
(R) and U ∈ U

n
, we have that tr(D)=tr(UDU-1).

Lemma 12. Let 0 ≠ A∈ M
n
(H) be nilpotent. Then there exists T∈ U

n
 such that

tr(TAT-1)  is nonzero.

Proof. Let  0 ≠ A∈ M
n
(H) be nilpotent.  Let  such V∈ U

n
 that VAV-1 is upper triangular.

Since A is nilpotent, the diagonal entries of  VAV-1 are all 0. Since  A ≠ 0, VAV-1 has a

nonzero (s,t) entry for some s < t.  Write the (s,t)  nonzero entry of VAV-1 as b = b
1
 +

b
2
i + b

3 
j + b

4
k .  We show that there exists a unitary T such that tr(TAT-1) is nonzero

for the case when b
2
 ≠ 0. Similar arguments can be used to show that a similar

conclusion holds if  b
3 
or b

4
  is nonzero. Take

     (1)

which gives us

One computes that tr(XVA(XV)-1) = -(b
3
i-b

2  
j)  which is nonzero when b

2 
is nonzero.

Now, assume that  b
1
 ≠ 0 and b

2
 = b

3
 = b

4
 = 0 .  Without loss of generality,  we

assume that b
1
 is positive, since otherwise, we consider -VAV-1.  Recall that there is

a  nonsingular  X
1 
 such  that                                               for  some  positive  b.  Let

   and let

iii

n

i
EdD  1=

=





























tn

st

s

I

k

I

k

I

X

0000

0010

0000

0100

0000

2

1
= 1

1



































tn

st

s

I

k

I

k

I

X

0000

0010

0000

0100

0000

2

1
= 1

1

1 (2).





















00

0
= 1

1
1

1

b
X

ij

ji
X










2221

1211
1 =

xx

xx
X





























tn

st

s

I

xx

I

xx

I

X

0000

000

0000

000

0000

=

2221

1

1211

1

.
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One computes that tr(XVA(XV)-1) = 2i ,  which is nonzero.  For all the cases, we take

T = XV as the desired unitary matrix.

Theorem 13. Let A∈ M
n
(H). Then tr(A) = tr(UAU-1) for every unitary U if and only

if A is Hermitian.

Proof. Suff iciency is already proved in Corollary 4.  For the forward implication we

consider U ∈ U
n
 such that  B = UAU-1  is upper triangular. By Corollary 9,  B has real

diagonal entries. Now, suppose A is not Hermitian. Then we can write  B = D + N

where D is a real diagonal matrix,  tr(D)= tr(B)=tr(A), and  N is a strictly upper

triangular nonzero nilpotent matrix. Lemma 12 guarantees that there exists a unitary

T such that  TNT -1has nonzero trace.  But tr(TDT-1)=tr(D) by Corollary 11, and so

we get 0=tr(B)-tr(D)=tr(TBT-1)-tr(TDT-1)=tr(TNT-1) ≠ 0,  which is a contradiction.

Hence A is Hermitian.

We then ask if A∈ M
n
(H) being Hermitian is suff icient for the trace to be invariant

under similarity in general. One observes that the answer to the preceding is yes

for the case when n = 1. However, if  n > 1,                              ,  and

            then A is  Hermitian, P  is  nonsingular  with                                      . Now,

tr (A) = 0 (110) but tr(PAP -1) = j.

Theorem 14  Let A∈ M
n
(H).  Then A is a real scalar matrix if and only if tr(A)=tr(PAP-1) for

all nonsingular matrix P∈ M
n
(H).

Proof. If A is a real scalar matrix, then AB = BA for every b∈ M
n
(H). Thus  tr(PAP-1)

= tr(PP-1A) = trA.  Conversely, suppose that tr(A) = tr(PAP-1) for all nonsingular

matrix P∈ M
n
(H). By Theorem 13, A is Hermitian. Suppose A is not a diagonal

matrix.  Let the (s,t) entry of A be nonzero for s ≠ t and write that nonzero entry as

a+bi+cj+dk.  Since A is Hermitian, the (t,s) entry of A is a-bi-cj-dk.  Take a permutation

matrix  T such that TAT-1 = TAT* has its (1,2) entry equal to a+bi+cj+dk.  Since TAT*

is also Hermitian, its (2,1) entry is a-bi-cj-dk  and its f irst and second diagonal

entries are real, which we denote as e and f, respectively.  Let                                 .

One computes that the 2-by-2 leading principal submatrix  of STA(ST)-1  is

20

0 0= 






ni

iA

2

2

1

2

)(
2

01 = 





 








nki

ki

IP

20)(

1= 
 





nki

ki IP

20)(

1= 
 





nki

ki IP

22

1= 






nj

j IS












fedicbkajfjejdkcjbia

fjejdkbiafedicbkaj

2333225355

2222333
(3)
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and that the other diagonal entries of TAT* are unchanged. If STA(ST)-1 is not

Hermitian, then, by Theorem 13, there exists U ∈ U
n
 such that tr(USTA(UST)-1 ≠

tr(STA(ST)-1= tr(A),  which is a contradiction.  Hence STA(ST)-1  is Hermitian. From

the  2-by-2   leading  principal  submatrix of STA(ST)-1,  we  see  that

 and  so  a=b=d=0.   To conclude

that  c = 0 ,   we take     and  use  similar  arguments on

RTA(RT) -1.  This is a contradiction since a+bi+cj+dk is nonzero.  Hence A is a

diagonal matrix.  To show that A is a scalar matrix, we suppose without loss of

generality that its 2-by-2 leading principal submatrix is diag (e,f) where e and  f

are  real  and  distinct.  Let                                    .  Then SAS-1 has its 2-by-2 leading

principal submatrix equal to .  If  SAS-1  is not Hermitian,  there  exists

unitary U such that  tr(USA(US)-1 ≠ tr(SAS-1,  which  is  a contradiction. Hence,  SAS-1  is

Hermitian,  and  so                          is Hermitian.  Thus                                ,  which

is  a  contradiction. Thus, all the diagonal entries of A are real and equal, that is,  A

is a real scalar matrix.

Corollary 15. Let A∈ M
n
(H).  Then AB = BA (127) for every b∈ M

n
(H) if and only if

A = rI (127) where r ∈ R.
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