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ABSTRACT

Let H e M,(C) be Hermitian and nonsingular. AnAeM,,(C) is called
H unitary if 4"H4 = H. The Jordan Canonical Form (JCF) of 4 is a direct

sum of only two types: (i) J, (1)® J, (i—) with || > 1 or (i) J, (e”)

with @ € R . If the JCF of 4 contains blocks of only type (i), then we show
that n = 2 p is even and the inertia of H is (p, p,0). If the JCF of 4 is
a single block of type (ii) and if n = 2 p is even, then we show that the
inertia of H is (p,p,O). If the JCF of 4 is a single block of type (ii)
and if n=2p+1 is odd, then we show that the inertia of H is either

(p+1, p0)or (p.p+1,0).
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LAYMAN'S ABSTRACT

Let H € M,,(C) be Hermitian and nonsingular. An 4 € M ,(C) is
called H unitary if A*H4 = H. We study the inertia of H (number of
positive and negative eigenvalues of H) in relation to the Jordan
Canonical Form of 4.
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INTRODUCTION

The eigenvalues of a Hermitian matrix are real numbers. The set of all n-by-n
Hermitian matrices includes the set of positive definite matrices (all the
eigenvalues are positive), the set of all positive semidefinite matrices (all the
eigenvalues are nonnegative), the negative semidefinite matrices (all the
eigenvalues are nonpositive),and the negative definite matrices (all the eigenvalues
are negative).

Let H be a Hermitian matrix,and let X be a nonsingular matrix that has the same
size as H. Sylvester's Law of Inertia states that the number of positive eigenvalues,
the number of negative eigenvalues, and the number of zero eigenvalues of H and
X * HX are the same [Theorem 4.5.8 of Horn and Johnson 2013]. Thus, if H is
positive definite (respectively, positive semidefinite, negative semidefinite, negative
definite), then X * HX is positive definite (respectively, positive semidefinite,
negative semidefinite, negative definite).

We let M (C) be the set of all n-by-n complex matrices.Let H € M, (C) be Hermitian.
The inertia of H is the triple of integers (p,q,r),where p is the number of positive
eigenvalues of H, ¢ is the number of negative eigenvalues of H, and r is the
number of zero eigenvalues of H.

A generatization of a unitary matrix (U*U =) is as follows.Let H be the set of all
nonsingular Hermitian matrices in M, (C), and let H e H_(C) be given.An A € M (C)
is called Hunitary if A * HA = H [Mehrmann and Xu 1995]. If a is a nonzero real
number and H = al, then an H unitary matrix is simply a unitary matrix. We let
O, be the set of all Hunitary matrices in M, (C).

Let A € M, (C) be nonsingular. Then, A * HA = H if and only if A(-H)A =-H.
Hence, A € O, ifand only if A € O_,. If (p, ¢, 0) is the inertia of the nonsingular H,
then (p, g, 0) is the inertia of ~H. Let B € M (C) be similar to an element of O,,.
We study the inertia of H. Notice that there are several H for which Bis similar to
an elementof O,.

There exist an integer Q) <k <n and a nonsingular X € M_(C) such that
X 'HX ‘'=1L,=1,® -1, , [Theorem 4.5.8 of Horn and Johnson 2013].
Notice that the inertia of H is (k,n - k,O). An L, unitary matrix is also called
Lorentz (Autonne 1915; Givens 1940; Mehrmann and Xu 1999). One checks that Q
€ 0, ifand only if XQX* <€ O,,.
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Let A € O, be given.Then H'4 * H = A If A has aJordan block corresponding to
the eigenvalue A, then A also has a Jordan block corresponding to the eigenvalue

—/11—. When |4 # 1, these two blocks are different, and when|4| = 1, these blocks are
the same. In fact, a B € M, (C) is similar to an element of O,, if and only if the
Jordan Canonical Form of B can be expressed as a direct sum of only the following
two types: (i) J, @)e J, [ ;—) withw >1, or (ii) Jp(em) with 8 e R
[Proposition 4.3.3 of Gohberg and others 2000]. Most of the work in this area has
been of this type: that is, for a given H, the properties of an 4 € O, have been
studied. Notice that if 4 € O, then H is not unique. We investigate the possible
inertia of H when the Jordan Canonical Form of B contains only type (i) or one
block of type (ii). For these two cases, we determine all the possible inertia of H.
For n < 4, we present the possible Jordan Canonical Form of A € O, and the
corresponding inertia of H.

We begin with the following observation, which can be easily proven.

Proposition 1. Let A € M, (C) be nonsingular. There exist an integer k anda Pe
OLk(C) such that A is similar to P if and only if there exists H € H, with inertia
(k,n—k,0) suchthat A"HA = H.

Let B* , bethesetofall A e M,(C) such that there exists H € H, with inertia
(k,n - k,0) and satisfies 4°HA = H .Noticethat / e B, _, foreach integer
k=0,1,., n. Now, 4eB* , ifandonlyif4eB} .

Let 4 € B%_, begiven.Thereexists H € H, with inertia (k,n - k,O) such that
AHA = H.LetS € M ,(C)be nonsingular. Set D = S™' 48, so that 4= SDS .
We have (SDS '} H(SDS )= H andthus, D*(s*HS )D = 5" HS.

Proposition 2. For each k, we have B%_, =B} ™", Let 4eB*_, be given. If
S e M ,(C) is nonsingular,then S™'AS e B%_, .

Let PeO, c M, (C) and let Q€ OLJ, c M,(C) be given. Because
L, ® L, issimilarto L,.,,eM,, (C),we have P @ Q is similar to a matrix
in .
OLk+j

Proposition 3. Let A € M (C) and let B € M (C) be given. Let 0 <k <n and
0 < j < m beintegers. If A is similar to a matrix in OLk and if B is similar to a

matrix in OL ,then A® B is similar to a matrix in OLk .
J +
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MAIN RESULTS

A
eigenvalue of 4 . Notice that 4 = (%J ifand only if |4] =1, thatis, if and only

1
Let A e M (C) be nonsingular. If 4 is an eigenvalue of A, then (—] is an

if 2 =¢'forsome 8 € R, We let O'(A) be the spectrum (set of eigenvalues) of

Let A e M (C) be nonsingular such that o-(A)no'(Z_l)= . Set BEAGB:{I,

and consider the equation B*H = HB~'. Write H = [H“ H”} conformat
toB. Then, a Hay
AH,=H, A", 1)
AH, = H,4, (2)
A'H, =H, A", (3)
and
ATH,=H,A. (4)

Since O’(AT)= o(4), we have U(A’)m O'(A")= o= O'(A‘T)m O'(Z).
Theorem 4.4.6 in Horn and Johnson 1991 guarantees that H,, = 0 in equation (1)
and that H,, = 0 in equation (4). Thus, any solutionto B*HB = H has the

0 H,

formH =
[H,, 0

0 H
J. If we require H e H,, ,then H =| "> | and
H, 0

H_, is nonsingular. The inertia of suchan H is (n, n,O) (Problem 40 in Horn and
Johnson 2013).

Theorem 4. Let A € M (C) be nonsingular such that 0'_(A N G(Z“ )= & . Then
A® A4 € B”. Ifthereis an integer k forwhich A® 4 eB% , ,then f=p.

Let B € M (C) be given. Suppose that the JCF of B contains only Jordan blocks of
type (i), say Bis similar to

(im0 7]
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with 'lj|>1 foreach j=1,.., p.let k=n+---+n,. Then m =2k. Let

T T
C=J,G)8 8, (2,) et D= Jnl(TJ@...@ Jn,,(i j

1 P
Notice that D is sjmilar to E_l,so that B is similarto C @ C_l . Notice also that
O'(C)r\ a%_l)= & .Theorem 4 guarantees thatC @ c e B . Proposition 2
guarantees that B e B: . If there exists an integer j suchthat B e B;k_j ,then
Proposition 2 guarantees that C ® C € Bj, ;. Theorem 4 guarantees that
j=k

Corollary 5. Let Ae M, (C) be nonsingular. Suppose that there exist positive
integers p , ny, ..., N,, nonzero Y ﬂp € C such that |)»,.| >1 foreach i =1,
« p and A is similar to

[J,,] )eJ, [%D@ | J, (2,)® J,,p[AIJ :

1 P

Let k=n,+---+n,. Then n=2k and AeBY). Ifthereis an integer j for
which A€ B3, then j=k.

We now turn our attention to Jordan blocks of type (ii).

Let 4,B e M ,(C) be given. Suppose that there exists a nonsingularX such
that A = XBX ~'. Then, for every H € M ,(C), we have 4"HA = H if and
only if B'(X'HX )B = (X'HX ) Now, the equation A*Z4 = Z has a solution
H ,eH, ifand only ifthe equation B"ZB = Z hasasolution H € H,. Notice
that H, isasolutionto B'ZB = Z ifandonlyif — H, is also a solution.

Letd e R be given. Then J,,(em) is simitar to e'?J (1). Now, notice
that 4" Z4 = Z ifand only if (e"BA)’Z(eiﬁA)z 7. Thus, if

7, )27, ()= 2 (5)
has a solution H, € H, with inertia (k,n—k,0), then
T )z, (e)=z (©)
has a solution H, € H, withinertia (k,n —k,0) or (n - k,k,0). Conversely,if

equation (6) has a solution H,; € H, with inertia (t,n—t,O) then equation (5) has
asolution H, € H, with inertia (t,n—t,O) or (n—t,t,O).
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Let Z = I_z,.'jJ be a solution to equation (5). Then, (see the proof of Lemma 4 in
equation 6 of Horn and Merino 1999).

Zl—l,j—l + Zi—l»_,‘ + Z,"j_] = 0 forall i, j (S {],..., n} (7)

where we adopt the convention that z, = 0 if either p=0 or g=0. Set
J =1 and notice that Z;,, = 0 for i=1,.,n—-1. Set J =2 and notice that
z,, =0 for i=1,.,n—2.Moreover, we also have Z, ,,+Z2,,= 0, so that
Z,.1, = —Z,, .Continuing this process, we see that z, ; = 0 whenever i+ j<n,
and z, = (— 1y Z,-

—ii+l

Proposition 6. Every solution to equation (5) has the form

[0 o (1)'z,| ®
0 *
zZ= 0 Z,, *
0 -z, =
zn,l * *

If n is evenand Z is Hermitian,then Z, ; is purely imaginary. If n isodd and Z
is Hermitian, then Z, | is real.

We show that equation (5) has asolution in H for each positive integer # . When
n=2k + 1 is odd, the proof of Lemma 3 of Horn and Merino 1999 (in equation 6,
where the symmetric S in constructed) that-Z may be taken to be Hermitian (in fact,
real symmetric). For the case n = 2 k is even, we use mathematical induction.

0 ia

For the base case, notice that Z, = [ b } with g, beR anda#0

- ia
satisfies equation (5) and is Hermitian. Suppose that Z,, = lzi.jJe H,, satisfies
equation (5) with z,, =ia and 0 # a € R. Set

0 0 ia ®
ZZk+2 =10 _sz X |
—ia x' c '
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where x € C?* is to be determined. Write

1 e 0
J2k+2(1)= 0 JZk(l) €2
0 0 1

conformal to sz+2 .Here, ¢, € C?2* is a vector with the i entry 1 and all other
entries are 0. A calculation reveals that Z,, , is a solution to equation (5) if and
only if the following equations are satisfied.

——JzTn(l)ZZkeZk +iae, +J2Tk(1)x= x (10)
and
el x+x'e,, —el,Z,e,, +c=c. (11)

Equation (10) reduces to J],(1)Z,,e,, — iae, = J, (0)x, which has a solution
since the first entry of the left hand side is () . Every solution to equation (10) has
a free variable X,, . Equation (11) reduces to 2 Re (xz,‘ )= e Zyer = enZ il s
which has a solution since the right hand side is real because Z,, is Hermitian.

We now look at the possible inertias of a nonsingular Hermitian matrix Z, of the
form (8). We begin with the case n = 2k +1 is odd. Suppose that z,,=a> 0.
We use mathematical induction to showthat Z,,,, has k +1 positive eigenvalues
and k negative eigenvalues. The base case is clear: Z, = [a] has 1 positive
eigenvalue (@) and 0 negative eigenvalue. Suppose that Z2p+] has p +1 positive
eigenvalues and p negative eigenvalues. Notice that

0 0 a
22p+3 = 0 ZZp+l
a x* c

0 0
The eigenvalues of 0 Z

} are 0 together with p +1 positive eigenvalues
2p+1

and p negative eigenvalues of Zz,m .Cauchy’s interlacing theorem for a bordered
Hermitian matrix [Theorem 4.3.17 of Horn and Johnson 2013] now guarantees that
Zzp+3 has p+2 positive eigenvalues and p+1 negiative eigenvalues. If
z,,=a<0, then Z,,,, hask positive eigenvalues and k +1 negative
eigenvalues. A similar argument shows that Z,, ., inequation (9) has k +1 positive

eigenvalues and k£ + 1 negative eigenvalues.
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eigenvalues. A similar argument shows that Z,,,, in equation (9) has k +1 positive
eigenvalues and k£ +1 negativeeigenvalues.

Proposition 7. Let n be a positive integer. Let Z, € H, be a solution to equation
(5). tf n =2k is even, then the inertia of Z,, is (k,k,O). If n=2k +1,thenthe
inertiaof Z, is (k+1,%,0) or (k,k+1,0).

Let P, e H, be a solution to equation (6). Suppose that the inertia of P, is
(p,n - p,O). Then equation (5) has a solution T, € H, with inertia (p,n - p,O)
or (n -p, p,O). If n =2k is even, then Proposition 7 guarantees that the inertia
of T is (k,k,O). Hence, in this case,we have p =k . If n = 2k +1 is odd, then
Proposition 7 guaranteesthat p=k or p=k +1.

Theorem 8. Let @ ¢ R and let a positive integer n be given. If n = 2k is even,
then J, (e”’)e Bj . Ifthere is an integer P for which Jn(eig)e B , then p=k.
If n =2k +1 isodd, then J, (e”’)e B, and J, (e”’)e B#*'. Ifthere is an integer

D for which J"(e"’)e Bi ,.then p=k or p=k+1.

SMALL VALUES OF n

Let A € M (C) be H unitary,so that 4*H4 = H. We look at the possible inertia of
H when n<4. Collect all type (i) Jordan blocks of 4 in Be M ,(C)
and collect all type (ii) Jordan blocksof 4 in C e M ,H,(C ). Notice that p=2k
is necessarily even and that B € B: . Now, there exists a nonsingular S € Mn(C)
such that S7'4S = B @ C . Hence, we have

(Broc s HS)=(s"HS B @ C'). Write S*HS =[H“ "

)2:’
. H, Hy
conformal to B® C . Notice that B and (! have disjoint spectra and C* and
B also have disjoint spectra,sothat H, =0 and H, = 0.

Suppose that A is similar to a unitary matrix, say, XAX "' is unitary. Then
A'(X"X)A = X" X. Notice that X * X is positive definite, so that the inertia of
XX is (n,0,0). Conversely, suppose that H may be chosen so that the inertia of
His (n,0,0 . Then,such an H is positive definite. There exists a positive definite
Pe M,,(C% such that H = P? [Theorem 7.2.6 of Horn and Johnson 2013]. Now,
A'HA=H becomes A'P*4=P* and (P4P~')(P4P)=1. so that
PAP 7! is unitary. If H has inertia (n,0,0),then ~H has inertia (0, n,O).

Lemma 9. Let A€ M,,(C) be H unitary. Then A is similar to a unitary matrix if
and only if H may be chosen so that the inertia of H is either (n,0,0) or (0, n,O).

98



EN Gueco and others

Let, ..., 6, € R begiven.If 4 =diagle'® ¢"r |andif H = diag(£1,..., 1),
then A is H unitary.The choice H = I has the inertia (n,0,0 ), as guaranteed by
Lemma 9. Let F € M,(C) be H unitary. If F is not diagonalizable or if F has
an eigenvalue 1 with |l| # 1, then the inertia of H can neither be (n,0,0 ) nor

0,n,0).

. . i6 9 .
Suppose that the distinct eigenvalues of C are e !,...,e *.There exist integers
m,.., m,,nonsingular 7, € M,,_p(C),and

c,=J, (e’”f )@ @, (e“"‘)
J

with j=1,.., k such that 7,7'CT, = C, ® --- ® C,. In this case, T, H,,T, is
block diagonal, conformal to 7,'CT,. The determination of the inertia of each
block presents much difficulty.

1
If » =2 ,then the only possible JCF of 4 are (1) diag ’1’; with |ﬂ'> 1,()
J, (ems with 8 € R ,and (3) diag ei‘g,eiﬂ) with 8, f € R . In case (1), Theorem
4 guarantees that the only possible inertia of H is (1,],0 ) In case (2), Theorem 8
guarantees that the only possible inertia of H is (1,1,0). For case (3), the possible
inertias of H are (2,0,0 ) (1,],0 ) and (0,2,0).

.,
If n =3, then the only possible ICF of 4 are (1) diag(l’z’e 0] with MI >1

and g cR.(2) J, ()@ [ ] with 0,8 R ,(3) J,(e”) with g e R ,and (4)
diag (e"",e""’,e"‘s) with 8, 8,6 eR..

In case (1), Corollary 5 and Theorem 8 guarantee that the possible inertias for H are
(2,1,0) and (1,2,0). Notice that 4 is not similar to a unitary matrix,so that Lemma 9
guarantees that the inertia of H cannot be (3,0,0) or (0,3,0). In case (2), the only
possible inertias for Hare (2,1,0) and (1,2,0). The inertia of H cannot be (3,0,0) or
(0,3,0) as 4 is not similar to a unitary matrix. For case (3), Theorem 8 guarantees
that the inertia of H can only be (2,1,0) or (1,2,0). For case (4), the possible inertias
of H are (3,0,0), (2,1,0), (1,2,0), (1,2,0) and (0,3,0).

1,1

1

If =4, then the only possible JCF of 4 are (1) J2(A)® 1| — | with [4|> 1,
1 1 ¢

@ diag[l»j’ﬂ’ ﬁJ with 2], |B]>1,(3) diag 4’;]@ 1) with 4] > 1

and # R, (4) diag ﬂ,z,efe,eiﬁ with |A|>1 and 8,8eR, (5
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J,)® J,(* ) with6, B e R, (6) J, (e )@ diag(e”,e ) with 6,8,5 € R,
(7) Js(em)@ [e’”] with 9,8 € R, (8) J4(e'9)with # € R, and (9) diag (e,.gl S0 e,.,,‘)
with 6,...., 0, €R..

In case (1), Corollary 5 guarantees that the only possible inertia of H is (2,2,0). In
case (2), Theorem 4 guarantees that the only possible inertia of His (2,2,0). In case
(3), the discussion at the beginning of this section shows that the only possible
inertia of H is (2,2,0). In case (4), Corollary 5 and Theorem 8 guarantee that the
possible inertias of H are (3,1,0), (2,2,0), and (1,3,0); and since 4 is not similarto a
unitary matrix,Lemma 9 guarantees that H can neither have an inertia of (4,0,0) nor
(0,4,0). Similarly, for case (6), the possible inertias of H are (3,1,0),(2,2,0),and
(1,3,0); and neither (4,0,0) nor (0,4,0). In case (7), the possible inertias of H are
(3,1,0), (2,2,0), and (1,3,0). In case (8), Theorem 8 guarantees that the only possible
inertia of His (2,2,0). In case (9), the possible inertias of H are (4,0,0), (3,1,0),
(2,2,0), (1,3,0), and (0,4,0).

We now look at case (5). Suppose that 4 = SBS ~',where B = J,(e"?)® J, (¢ )
with 8,8 e R. If @ # f + 2kx foranyintegerk,then S'HS = H, ® H,,with
H,,H, € H,, each with inertia (1,1,0). Thus, the inertia of H is (2,2,0). If
0 =p+2kr for some integerk, then e =e¢’ and Bis similar to
C =¢"“(J,(1)® J,(1)). Every Hermitian solutionto C*ZC = Z has the form

0 ia 0 c

—ia b -c¢ d
Z= _

0 -¢c 0 e

E g —ie f

with a,b,e, f e R . If Z isnonsingular,then g and ¢ cannot be both . Now, the

eigenvalues of | 0 ia 0 [are 54 ,b2+4|c|2+4a2 and 0. Notice that

—ia b -C 2

0 -c¢ O

. Cauchy’s interlacing

b—\/b2+4]c]2+4a2 <0< b+\/b2+4lclz+4a2
2 2

theorem for a bordered Hermitian matrix [Theorem 4.3.17 of Horn and Johnson
2013] now guarantees that Z has 2 positive eigenvalues and 2 negative eigenvalues.
This example shows the difficulty in handling the general case involving multiple
Jordan blocks corresponding to the same eigenvalue (¢ , with @ e R ).
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