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ABSTRACT

in their 2012 work, Lope, Roque, and Tahara considered singular
nonlinear partial differential equations of the form fu, = F(¢,x,u,u,),
where the function F is assumed to be continuous in ¢ and holomorphic
in the other variables. They have shown that under some growth
conditions on the coefficients of the partial Taylor expansion of F as
t—0, the equation has a unique solution u (¢, x) with the same growth
order as that of F(¢,x,0,0). Koike considered systems of partial differential
equations using the Banach fixed point theorem and the iterative method
of Nishida and Nirenberg (1995). In this paper, we prove the result
obtained by Lope and others using the method of Koike, thereby avoiding
the repetitive step of differentiating a recursive equation with respect
to x as was done by the aforementioned authors.
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INTRODUCTION

In 1856, Briot and Bouquet established well-known results on the ordinary
differential equation

(S = ), 0.0)=0,

*Corresponding Author

ISSN 0115-7809 Print/ISSN 2012-0818 Online



J.E.C. Lope and R.L. Caga-anan

from which Gérard and Tahara (1996a, 1996b) modeled the nonlinear singular
partial differential equation
ou ou

tFt—_F(t’x’“’E)’ (1)
where du/dx = (du/dx,,...,du/dx,). The function F(t,x,u,v) is a function on
Q=[0T}xDyxB,xD,, with B, ={xEC{x|<r} and D, ={x€C" | x|sr},
where | x = max 1.z, | X, |@and C is the set of complex numbers. Assuming that
F(t,x,u,v) is holomorphic with respect to all the variables, Gérard and Tahara
have proven the unique existence of a holomorphic as well as a type of singular
solution to (1). They also provided extensions of their results to higher order
nonlinear singular equations.

Lope and others (2012), considering (1) with the weaker assumption that Fis only
continuous in ¢ and holomorphic in the other variables, showed that under some
growth conditions on the coefficients of the partial Taylor expansion of F, the
equation has a unique solution u(#,x) with the same growth order as that of
F(t,x,0,0) . In their proof, they needed a modified version of Nagumo's lemma and
had to differentiate recursive equations. In this paper,we wish to give an alternative
proof,based on Koike's method (1995) and direct application of Nagumo’s lemma,
thereby avoiding the repetitive differentiation.

Remark 1.1 While preparing this paper, the authors were also working on extending
the result of Lope and others (2012) to the class of ultradifferentiable maps- a
class smaller than the class of continuous maps but strictly larger than the class of
analytic maps. They had seen that the method presented in this paper is working
more readily than the method used by Lope and others.

THE MAIN RESULT AND PRELIMINARIES

let T>0,0<R<1, p>0,and > 0.We will consider the same problem
considered by Lope and others that is, singular nonlinear partial differential
equations of the form (1), where the function F(f,x,u,v) is assumed to be
continuous on Q and is holomorphic in the variables (x,u,v) for anyfixed ¢.

We first define what is, as named by Tahara, a weight function (1998). We say that
u(t) is aweight function on [0, T'] if it is a continuous, nonnegative, increasing
function on (0, T") such that u(¢)/¢t is integrable on (0, 7). Note that such a
function must satisfy |im,.,x(¢) = 0. Examples of weight functions are t‘s,
1/ -log #)"° and 1/( - log t)(log (- log ¢))° forany positive &.
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Fixed-point Theorem and the Nishida-Nirenberg Method

For a weight function u(¢) ,the function @ (¢) = ﬁ:,u (r)dt/t is well-defined on
[0, T).For any >0, the region W is defined as

W, ={({t,x);0st<Tand@t)/r+|x|<R}. (2)

We note that W, also depends on T, but we will not explicitly indicate this in our
notation for the sake of simplicity. We define two spaces on W: the space X, (W),
composed of all functions in C°(W,) thatare holomorphicin x for any fixed ¢,
and the space X (W,), composed of all functions inC'(W, N {t>0})N X, (W,).
Observe that if r, <7, ,then w, Cw, and X,w,)cx,w,) for j=01.

We will now give the assumed conditions on (1) as given in Lope and others (2012).
Let u(¢) be any weight function and a €[0,1]. Set a(¢,x) = F (¢, x,0,0) and
A(t,x) = F,(1,x,0,0). We work on (1) under the following assumptions:

(Al) a(t,x) and a, (¢,x) for Ilsisn are both bounded by 4 u(f)“ on
[0, TIx D,

(A2) F, (¢,x,0,0) = O(u(1) (as t—0)for 1<sisn uniformlyon D, ;
(A3) ReA(t,x)s -c on[0,T]x D, forsome ¢ > 0;

(A4) Foralllsi,j<n, E",’_(t,x,u,v) and Fvivj (t,x,u,v) are of order
O(u(t)!") (as ¢t = 0 ) uniformlyon Dyx B, x D, .

We now restate the main theorem as stated in Lope and others (2012). We use the
notation | dg/dx | for max 1<isx|08/3x, |,

Theorem 2.1 (Main Theorem) Suppose (A4,) - (4,) hold. If a€(0,1] and T is
sufficiently small, or if @ = 0 and both T and A are sufficiently small, then there
exists an r > 0 such that (1) has a unique solution u (t,x)€ X (W ,) that satisfies

e, Ly and rx) = p L o, 3)

Using the partial Taylor expansion of F(¢,x,u,v), we rewrite (1) as
(1= 26D = at, )+ ®lul+ (1, x,u), @

where @ [u] is defined by

o du du
Q[“]_Zlb"(”")a_xf G(t,x,u,—(,;), (5)
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f(t,x,u) = 2 " (3" FI3u™)(t,x,00) u™/m! is holomorphic in (x,u) and
G (t,x,u,v) isthe sum of the remaining terms in the partial Taylor expansion of
F(t,x,u,v) whose degree with respect to («,v) is at least 2. Note that
G (t,x,u,0) = 0,since each term of G has at least one du/dx, as a factor.

From assumptions ( 4, ) to ( 4, ) and the holomorphy of F(¢,x,u,v) with respect
to (x,u,v), it follows that there exist positive constants B,A, and B,, and
Bo,2 , such that the following estimates hold:

* maXiwien {{B, (6, %)} < Bua(r) on [0, T]x D, ;

dA
. IB—;(t,x)[s A on [0,T]x Dy;

8%F " 62F a
oud (t x,0,0) |s B 1/‘(’)] and | (t x,0,0) |s B z/"(t)]

ol
forlsi,jsnongQ.

Remark 2.2 Let u € X ((W,) such that |u(¢,x)|s Cu(s)® for some constant
C > 0,aweight functlon u(t) and a €[0,1]. We observe that, f =y f and
£, =uf ,where f and f arealso holomorphicin (x, u) and that | f I<| £ on
W,. Let K, and K, be the bound for f and f,_ =1,..., n ) respectively,

on the closed domain o ={t,x,w)ERxC"xC;0st=T,|x[|s R,|wl|s p}.
We have the following estimates on ¥, :

| f(txu(t,x) |s K, (Cu()*)* (6)
| fu(t,x,u)|s K,Cu(t)” 7)
| f,, (tx,u) s K (Cu())?, C(8)

where the derivative on the third inequality is only on the space variable X; and
none on u(t, x) .

We next present two important lemmas that appeared in Lope and others but are
also important in our proof. The first Lemma states some elementary results on
linear Fuchsian equations while the second is called Nagumo’s lemma. For the sake
of completeness, we will reproduce the proof of the first as found in Lope and
others (2012). The proof of the second can be seen in Hormander (1963) (Lemma
5.1.3).
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Fixed-point Theorem and the Nishida-Nirenberg Method

Lemma 2.3 Suppose (A4;) holds. Forany g(t,x)E X ,(W,), the equation
a
(tgy—/l(t,X))W=g(t,x) 9)
has a unique solution w(t,x)€ X ,(W,),and itis given by
o ! ds dr
w(t,x) = [ exp (f/l(s,x)T)g(r,x)T- (10)

Moreover, the following estimates hold on W, given any nondecreasing,
nonnegative function y (¢) :

a.If |g(t,x)|s My (t) , then |w(t,x)| ES %VJ ).

Mu(ty (1) _ Mry@)
A b. If |g(t,X)! = (R— I x I —-¢(I)/r)2 ’then IW(t’x)‘ = R" l X l —'w(t)/r '
Mu(y (1)(R-| x ) _ Moy ()
e IF 8 o= gy then P69l < R-|x|~@(t)r -

Proof. We note first that by (4,),

The integral representation (10) of the solution is easily verified, and the estimate
in (a) follows from it. To prove (b), we use the fact that ¢ () =u(t) /¢t and estimate
as follows:

exp (f:ﬂ.(s,x)%s—)

(R-|x|-@()r)! «
! @'(7)
MY O R ey T
_ 1 L
=My U T S R 2]
Mry (1)
R—lx[—tp(t)/r’

fw(t,x)|sfo’(§)c Mu()y (z) dz

after simply ignoring the nonnegative subtrahend. As for (c), we estimate as in (b)
but instead of dropping the subtrahend, we make use of the presence of (R- | x |)
to cancel the unwanted term in the denominator.

Lemma 2.4 Let f(x) be a holomorphic function on B,.If

C
| )<= =57 o Be
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forsome C =20 and g = 0, then

7oC on B
(R_lxl)aﬂ R’

of

‘ax (x){s
where yo =1 and vy, =(1+a)1+1/a) forg> 0.
Given u,w€ X ,(W,) ,we define

Olu,wi(t,x)= Eb,.(t,x)gTw+ G(t,x,u,%%).
i=1 i

We used the same Greek letter as in (5) but this should not cause any ambiguity.
Using this notation, we see that ®[u,u] is just the quantity ®[u] defined in (5).
Inviewof (B)) and (B;) ,we have the following lemma that gives the estimate
for the modulus of the difference ®[u,, w,]~ ®[u,, w,].This lemma and Lemma
2.1in Lope and others are analogous (2012).

Lemma 2.5 Let u,w ,u,,w, bein X (W,) . Suppose that for some constant

Sy (1, x) ]

aw,
C > 0, aweight function u(t) and a €[0,1] , | %, (2, x) ], ?(t,x)

M (1, x)

and ax

are all bounded by C pu(t)° on W, . Thenon W, , we have

Iw,

< ow
[ @l w = @Luy,w,)ls Y Bu(t)| =~ —=2|+nCB ,, u(Du, - u,
et dx, dx,

< dw,  Iw,
+Z(3,J + nBO,Z)C‘Lt(t)IW— P

1 1

l

PROOF OF MAIN THEOREM
3.1 Existence of a solution
We use the Banach fixed point theorem or the contraction mapping principle as in
Walter (1985) and follow the construction of a complete metric space by Bacani
and Tahara (2012). Equation (4) is equivalent, by Lemma 2.3, to

! / ds dr
u(t,x)= j;eXp (f/l(s,x)—)[a(r,x)+ Qlul(z,x)+ f(r,x,u)l—. (11)

T s T

If the operator y[-,w],for a fixed w,defined by

Wl Wl = flep (4G9 (e, 0) + @l wl(z,x) + £ (x,00] 4
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is a contraction mapping from a suitable function space E (which must be a complete
metric space) into itself, then we have a unique ¥ € E such that u =y [u,w],
that is,a unique fixed point. We denote this u by S[w].Therefore, we have our
solution to (4) if we can finda ¥ € E suchthat u = S[u].

Let us now define the function space E .For » > (Q and T > (0, we denote by
B(W,) the set of all functions u & X (W,) such that for some C >0,
lu(t,x)|s Cu(t)* on W, .We define a norm || u “B,, of u€ B(W,) by

u(t,x)
Hull,,= sp HEDL
(r.0ew, >0 W(t)

We note that this norm is simpler than the one defined in Bacani and Tahara (2012).
itis easytoseethat (B(W ), || ‘|l 5,) isaBanach space.

In the following, we will also use the notation || = (x) ||, for sup , ., |u(z,x)]|.

Remark 3.1 The following estimate will come handy in the proof of the next
proposition. For 0 <¢ = T ,we have

t
wp O o (g @O u (e, |
(1L.X)EW, 1>0 u(t) (1.x)EW, 1>0 \ O<rs1 u(r) (1. x)EW , >0 u(t)

For M >0,weset B, (W, )={u€BW,)dlulls,s M}.Thisis a closed
subset of B(W,) and so itis a complete metric space. B, (W,) is our function
space E, for a chosen M. We note here that it is necessary, for our operator ¢ [+, w ]
to be defined,that w and its partial derivatives with respectto X; be also in E.

In the following, we will choose M to be of the form SC—A( 1+ Z—CA— . Note that M

depends on 4. This choice of M will be clear in Proposition 3.3. We also define

C, = nB +2nMB, , + n’MB,,.

Proposition 3.2 Let r>0. Then, there exist M ,T>0 such that for every fixed
weB,, (W), suchthat dw/ox,(i = 1,.., n) isalsoin B, (W,), the following are
true:

(@) ¢ [, w] isamapping from B,, (W,) toitself.

by [, w] is acontraction map.
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Proof. We choose M and T so that the following inequalities hold:
C,§(1+2—A)/¢(T)+ KM §(1+2—l}—)/z(T)"s3), (12)
¢ ¢ c ¢

nB  Mu(T)+ K Mu(T)* <
¢

1. (13)

We can satisfy the two inequalities above by choosing a sufficiently small 7 if
a = 0. Butif @ = 0,we need to choose T and also a sufficiently small 4 (and
hence, a small M).

Let wu,,w,ow/dx, (j=12 and i=1.., n) be in B, (W,). Then,

[u,(t,x)|, |w(t,x)|,| dw(s,x)/ x| are all bounded by M u (¢)* on W, .From
the definition of ¥ ,we have forany (¢,x) € w, .

T

¢ d
W[ul,w](r,xnsf;(—) la(e,x)+ @ [uy, wl+ f(z,x.,)] 2
t T
By (4,),Lemma 2.5 (noting that ®[0,0] = 0),and the estimate in (6), we see that
|a(z,x)+ ®lu, wl+ f(z,x,u,)|s Au(t)“ + (C]Mu(t) + K .M*u(r)® )ﬂ(t)“.
Thus, by (12) we obtain

d 4A4u()”®
T < —‘u()__.’ (14)
T C

Wlnwlenls [ T) 4due

which is the same as the estimate in the main theorem. It follows that
9L, w]ll,, = 22 < A, proving (a).
’ c

Let us now prove that ¥ is a contraction. In order to estimate the difference
ylu,w]l-ylu,,w],we first note that

F@xu)-f@xu) = (1 —uz)ﬂg—/;(z',x,uz +5(u, —1,))ds. (15)
Thus with Lemma 2.5 and (7), we have
| DL, W] @[ty W] |+ £ ()~ £ () |5 (B, Mu(T) + K Mus(2)" ), -1, |.
Therefore,

| @l W)= L, w10, 3) |s£( }) (@l W)= @y Wh(E3) + £ (53, £ (750D 2

sﬁ;(tT) (nB, , Mu(t)+ K, Mu())lu, -u, 1‘1—’

41




Fixed-point Theorem and the Nishida-Nirenberg Method

< (nB, Mu(t) + K M) | 1,1, )() -ﬁ(f) iz
_ (B Mu) + K Mu(n)*)

FCuy = uy ()

Dividing both sides by x(¢)“ and then taking the supremum over W, with £>0,
considering also Remark 3.1, we have

(nB,, Mu(T) + K, Mu(T)")
C

lwlu,wl-w[u,,wlll BrS [l e, —u, || B.r

In view of (13), ¢ [-, w] is indeed a contraction. ®

We will now construct a sequence of approximate solutions to our equation. To aid
us in the construction, we further want the following inequalities to hold:

Mu(T)* = p, (16)
max {K,, K,}Mu(T)" = %, (17)
nMB , u(T) 44K u(T)"
K=1- bt ‘ 0.
- + 2 > (18)

Inequality (16) ensures us that any solution will be in the domain of definition of
F(t,x,u,v) .The use of the other two inequalities will be seen later.

As in the preceding proposition, we can satisfy all the above inequalities by choosing
a sufficiently small 7 if o = (.But,if a = 0, we need to choose T and also a
sufficiently small 4.

We now fix T and A satisfying inequalities (12),(13),and (16) - (18).

As remarked at the beginning of Section 3.1, given w € B,, (W,) such that dw/dx,
is also in B,, (W,) ,the map ¥[-,w]: B,, — B,, has a unique fixed point u ,
which we denote by S[w].To find a solution to (11), we wish to findan » > ¢ and
construct u € B,, (W,) such that u = S[u].To this end, we define approximate
solutions as follows:
u, =0
andfor k=1,
u, = S[u,, ]

Our u would then be the lim -« ¥, . To prove the convergence of this limit, we

use the method of Nirenberg and Nishida. We thus need to define a decreasing’
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sequence of positive numbers, {, },,,,tending to a positive Llimit r_ .We define
the sequence as follows:

1
< 0
2C
re =r (1= (2Crl )k-]),

h

where

4C 2A
C = Kzl(l'l'—c—). (19)

By our choice of 7, the series Ehl(ZCrl)k is convergent, and so 7, is well-
defined and positive. We will show that 7, satisfies the positive number required
in the theorem, that is, there exists a unique ¥ € By, (W, ) such that u = S[u].

. du
Clearly, 'a'x"?‘ =0€B, (W,) forall i=1,..., n.Hence, there exists a unique

i

u, = Sfu,]=y[u,,u,]€ B, (Wr] ), and by the estimate in (14),
44
(0 < =5 () on 7, (20)

Now, ] / ds dr
u, (2,x) =j:)exp (ﬁ/l(s,x)—s—)[a(‘r,x)+ @ flu,u,l+ f(Tax’ul)]T

= frew (A6, 0D a0 + 1 nu 2, 21)

since ®[u,,0] = 0. Equation (21) can be expressed as the partial differential
equation

(t;—t—i(t,x))u, =a(t,x)+ f(t,x,u). (22)

Differentiating (22) with respect to X, , we see that

da dA af
—t+—u + =
dax;, Odx; ax,

i

] aof ou, _
(tgt‘-}v(t,x)‘g(t,xﬂu))a—xi— (t,x,u). (23)
In view of (20) and (17), we see that Re(A(t,x) + f, (¢, x,u,)) s —¢/2 <0, and
that

2 xug) s S 2 w0 = Aug”.
dx, 4

c
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Applying Lemma 2.3(a) to (23), we obtain,forall i=1,..., n,

%(t x) s A+4A4AN/c+ A
ox, cl2 #

| O =1+ 00 o w,. 4
c ¢

We now proceed by induction. We note that by proving the following proposition
we show that the sequence {uk} converges and thus the solution # = [im -« %,
exists and satisfies the estimates in the Main Theorem because each u, does.We
also note that the last estimate in () is the reason for our form of M, and, that

estimate with (16) implies the second estimate in the main theorem.
Proposition 3.3 For k > 2, the following hold:
(a) There exists a unique %,EBy, (er_l) such that u, = S[u,_,] and
44
lu, (t,x) |s —;—#(t)".

(b) On er‘l , we have

00t =)0 L, =20 ) I}s%#(na}%'
@on W, ,
s = e Wl i = 0, ) W) % 5
and thus
)

B,rk

Proof. Since we have (24), there exists a unique u, € B,, (Wﬁ) such that u, = S{u, ]
44 «
and lu,(¢,x) s Tﬂ(f) . Note that,
] ‘ ds dt
(u2 - ul)(tax) = ﬁ)exp (fl(syx)_)[q)[u2sul]+ f(‘t,x,uz)— f(-"',xaul)]'—_'
T s T
Hence, on W,I ,
7\ 19 dt
luy —uls J:(T) ‘(I)[uZ!ul]"' (u, - ul)ﬁ)'gi—(ryxsul +s(uy —uy))ds -
where |u, + s(u, —u,) = (1 - $)u, + su, |s — pu(2)“ .By Lemma 2.5,

du
—{+ nMB (1) |uy - uy |
dx,;

i

| D[uy,u, 1= Plu,,u,]- @u, 0] |s Cpu(t)
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Also,
3 44 «
luy —u, Ij:‘_f;(t’x’ul + s(u, _ul))‘ds sluy —u | Ky ——pu()”.
du c

Thus, from (24) and by the definition of @(t),

R )C—(H——)/A(T)‘“’ il ﬁ(—) (nMBnﬂ(r)+ e i |

s 7A(1+—)ﬂ(t) 7@+ 1B, )+ 225 ey )y )@ ﬁ( )

=, 4’4(1+_/\_)ﬂ(1) (p(t)+(nMB”ﬂ(t)+ /l(t) My = u, )(x)” -
Hence,

Koy )y - )01, .

Iy =), < C, i‘ﬁ(nz—)u(z) #(t) + (nMB,, (1) + 24

Therefore, using our defined constant K in (18), we have

Il (uy —u)X) ), K = C, ?‘i(l N %")y(r)“w(n.

In view of (19), and since R- | x| - zp( ) <1,wehave
[(uy —u Xt %) |s|| (u, —u )(x)II, (25)
4 C
‘—ﬂ(t) @) (26)
<
R-lx|- @ (1)
n
Applying Lemma 2.4 on (25),for all { =1,..., n ,we also have
44 «
'a(u -u) ——Cu) 1) (27)
——2 (¢, x)|s &
’ t)
axi R - l X I - &
n
Thus, with our definition of ¥, ,we have on Wrz ,
il 4AC « r,(R-|x
ity = )00, 0 2 1, ) utrye — LR D
x, c PNACEED)
44C e N
= t
c K1) 2Cr,
1 44 «
———u(t)“.
=3 u(t)
45
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Hence, by triangle inequality, forall i =1,..., n,

4

la”z| 'a(”z - ”l)lJa“lls %_(1 +—2;1}-)u(t)".

lax,lsl ox; [ |ax,.|

c

We thus have proved (a) - (c¢) forthe case f=2.

Suppose now that (a)-(c) hold for k= j=2. By (c) of the induction

hypothesis, forall i =1,...,n, du /dx, € B,, (W, ),and thus, there exists a unique
J 44

u;, €By (W,j) suchthat 4, = S[u; ]=9[u,,,,u;] and |u,, |s —;—y(t)"

r r

on W, ,proving (a) for k= j+1.Now,on W_
J J

(=10, )0:3) =X YA D@, 1= @114 ) - 11, RS
where

| (¢[u/+l’uj] - (D[uj’uj—l])(r’x) |< C,u(r) +nMB l,1ﬂ(T) | U~ U, I

J

a(u, -u, )
ax,

i

and

ds

() = F Q)N Tax) s u, —u, |f;'—§§<nx,u, s,y - u,)
< %Klu(r)“ (=, XT3 |

Thus, with 7; <7, ; and the induction hypothesis (b),

a(u, —u, )
ax,

(00 —u,)(r,x)|sﬂ(%) Coulr)

dt 7\ 4 AK » dt
(5] s+ 2 ue Pl =15

44 a -
— u(T) @)/ d_r+("MB i0) , 4K

= femeer| s | A 0 = X
r]'

sc, Heruw g 20

v R Txl-peyryr TN - O,
J

¢ A (T gy,
(4

R-|x|-@(t)r,

+ (=K Cu g = u ),
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Hence,
44

2 C T D e ()
I(u/,[ - u,)(t,x)ISH (uj.] - uj)(x)" I

R-|x|-@(t)r,

c’ ic'iﬂ(t)”w(t)r."‘
R-|x|-@)r, ~ (28)

where we use (19) for the second inequality. The first integral in the preceding
inequalities can also be estimated in the following way,

44 0 « i-2
T € I[)(uj—ul_l)ld-[ Cl/‘(’)?c u(t) p()n (T ‘dr
":’(’)Cl”(r)l dx, | = ) R—|x|-M fo(’) T
r

J

44 i a
Cou(n)—=Cu" @O |

S R-|x|-2(®) K
v,

J
Using this estimate instead in the preceding computation, we have another estimate
for the modulus of %, — U :

4A i l+a j-

lK 2 C]‘l:u(t) ¢(t)rl : (29)

[ =2, )R |51 (g = u MO N, s —€ D
R-|x|-2&
Now,
o(u,,, —u,
Hpa =4 = e DDl 1- 010, 1+ 70,0 ) 2
ox, 0 dx; 4 s T

Using (29), we have the following estimate:

exp (2 (523) SN P, 1= L, T+ 7,00 = F 7 00|

«1C MCHMW)M P’ e(1-K)C,CI ﬁ/4(1)""’ P’ KL
c c c

s 1) +
(’ R—[x]—M R_|x|_@
ry Ty

R 44 « -
c,c’ '#(1)7 u(@)* p(o)r”

1
R-1x|-28) (K>

J

s
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Thus, by applying Lemma 2.4 to estimate the modulus of the integrand in the
preceding equality, we get

40,0 u @) A py o ryny
sf' Kc d_‘r
° v@) i
r

J

6(uj,l —uj) (t. %)
dx; ’

44
c

<C/ ' g (r)drz

,“(’)a¢(t)r|j-2fo )
R—|x|-—(pft))

J

44 44 .
C/—=u®) o)’ r, C/—u@)* @)’
c = c .
R-|x|-@)r, R-\|x|-@()r, (30)

In view of (28) and (30), we have proven (b) for k = j +1.To prove (c),we have
onW, ,
j+l

4 4 a . j-
[ NP LIRS 7S WU [l LA L
u, ., —u )t,x)|,|——mm(¢, x s
e J 3x, R—|x|—rj“(R—|X|)
r.
, 4 4 «
<O Gy
1 44
—_— He.
=37 u(t)

and by triangle inequality,for i =1,...,n,

J+1

|ou |0 Cuya —u,)| 0w ] _84 (28, e
- ,,,=1| ox, ‘+|ax,-ls . (1+ - )l‘(t) )

i

Since # = lims—« ¥, is of the form (11),we also have u € XI(W,w ). We are left
to show uniqueness.

3.2 Uniqueness of the solution

Since Cr, < Cr, < %,the following proposition implies the uniqueness of the
t
solution. We note also that, since R-|x|~ (Lr(—l <1,the case k=0 in the

proposition clearly follows from its hypothesis.
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Proposition 3.4 Suppose u and v are two solutions of (1) in X,(W, ) such that
{ulvl,|ouldx|,|av/ox|}ts Mu()®. Then, for k =0,12,...
k
W) e 2mur v
ax R-|x|- p)

@

{I(u—v)(t,x)l,l

The proof is similar to that of Proposition 3.3 and thus we omit it here.
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