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ABSTRACT

In electrical impedance tomography (EIT), current patterns [; (I = 1,2,..., L) are injected to a body
through L electrodes and the corresponding voltages V; (I = 1,2, ..., L) are then measured. Based on
these measurements, image reconstruction is done by solving an inverse problem involving the generalized
Laplace equation —V - (gV¢) = 0 on Q , where o is the conductivity distribution and ¢ is the elec-
tric potential over (). Using the known quantities I and V,. we wish to recover the geometry and
conductivity ¢ within the body.

In this work, we considered the case where the body { is a unit square and has two square-shaped
cavities with constant conductivities. The forward problem was solved using the finite element method
while the inverse problem was posed as a minimization problem. We then explored the use of the genetic
algorithm (GA) hybridized with another heuristic algorithm (simulated annealing) and two deterministic
algorithms (Nelder-Mead simplex method and Quasi-Newton method) in solving the optimization problem.
Our numerical simulations showed that the proposed hybrids of the GA could best recover the conductivity
distribution if the geometry inside the body was known.
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INTRODUCTION

Electrical Impedance Tomography (EIT) is an imaging
technique that tries to recover the spatial distribution
of the conductivities in the interior of a bodyQ based
on electrical measurements from electrodes placed
around its boundaryd(Q. The measured voltage drops
are due to known current patterns that are injected
through the same electrodes. This non-invasive
technique has a wide range of applications, from breast
cancer detection (Cheney and others 1999) to locating
underground mineral deposits (Parker 1984) and the
detection of corrosion in metals (Santosa and others
1996).

Let us assume that the body Q has cavities at unknown
locations in its interior. If the conductivities on these
cavitics show good contrast with the surrounding region,
then the imaging of Q can be done using EIT.For
example, the specific conductance (conductivity) of
human tissues varies from 15.4 mS/cm for the
cerebrospinal fluid to 0.06 mS/cm for the bone. This
means that the cross-sectional images of the
conductivity distribution inside the human body should
show good contrast, and thus EIT can be applied.

The problem of image reconstruction via EIT consists
of two sub-problems: the forward problem and the
inverse problem. In the forward EIT problem, we solve
for the boundary voltages given the conductivity
distribution o over Q and the currents at the boundary.
This is done by solving a generalized Laplace equation
subject to some boundary conditions. The boundary
currents are chosen in such a way that the law of
conservation of charge is preserved. On the other hand,
the inverse EIT problem, also known as the image
reconstruction problem, is the recovery of the
conductivity distribution inside {1 given the voltage
and current measurements at the boundary. A
satisfactory solution, though, is difficult to obtain
because the EIT problem is ill-posed (Borcea 2006),
i.e., small changes in the boundary data could result in
large changes in the conductivity distribution of the
interior of Q) .

In this paper, we used the finite element method (FEM)

to solve the forward problem. As for the inverse
problem, we posed it as an optimization problem and
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iteratively searched for an estimate of the conductivity
distribution ¢ over Q that corresponds to the measured
boundary voltages and currents. While the paper by
Kim H-C and others (2005) obtained good results, they
only considered the case of finding the conductivity of
the body when the geometry is known. On the other
hand, da Silva Barra and others (2006) solved the
inverse EIT problem also with GA but they only did a
geometric reconstruction. Moreover, our method
obtained a lower residual value. Our numerical
simulations showed that hybrids of the GA could more
effectively solve the optimization problem, thereby
allowing a more accurate recovery of the locations of
the cavitiesor the valuegof the conductivities inside

Q. orboth quantities if both are unknow n.
MATHEMATICAL FOUNDATION

Consider a body Q with boundary 02 and conductivity
distribution ¢. The simplest reconstruction model,
known as the Continuum Model of the EIT Problem,
states that if the normal current density is prescribed
on 9Q, then the distribution of the electric potential
¢ on the whole body is uniquely determined.

Theorem 1 (Continuum model)

Suppose 2 ¢ R" is a bounded and connected domain

with sufficiently smooth boundary 8¢, conductivity
o € L”(Q) and that a flux feL?(dQ), with [ fas=o0,

is applied on dQ. Then the corresponding ‘induced
electrical potential ¢ € H'(Q) can be uniquely deter-
mined through the partial differential equation,

~V - (aV¢) =0 on O, (1)

subject to the boundary condition,

a%=fon Q. )

This can be proved using standard argument: we multiply
(Mby e HL(Q) and use the Divergence theorem and
Equation (2) to obtain the variational formulation. It is
then easily shown that the Lax-Milgram theorem
applies, and thus we obtain a unique weak solution

n Hl (Q)

However, this model of EIT does not apply in reality
because we only know partial information on the
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boundary, i.e.. electrical currents are injected through
the L electrodes and not on the whole of Q. Thus,
there is a need to modify the boundary condition (2).
Let e € 90 be an electrode attached to the boundary.
Suppose electrical currents I, (I = 1,2,...,L) are in-
jected into the body Q through these electrodes
e, (I,=1,2, .., L)attached on the boundary dQ. and let
r= Uff andl" = 9Q — I Moreover, let V, be the mea-
sured voltage at the /th electrode. We pose the following
new boundary conditions:

6¢d 3

L aa S=1] forl<l<I, (3)
1310 )
GE:O on I, 4)
d¢

p+zo =V onl (5)

Condition (3) simply means that the integral of the
current density over the electrode is equal to the total
current that flows to that electrode. Condition (4)
means that no current flows in the gaps between the
electrodes. Finally, condition (5) means that the voltage
under each electrode is not constant but rather drops
across the contact impedance layer (e.g., the human
skin)with impedance z;. The impedance can vary over
€ but shall be assumed constant for simplicity.

These new boundary conditions together with Eq. (1)
give us the Complete Electrode Model, which is the
EIT model used in this study. In addition to the boundary
conditions, we have the following standard conditions
for the injected current and measured voltages by
considering the conservation of the electric charge and
appropriate selection of the electrodes:

L L
E I, and vV, =0.
i=1 i=1 (6)

The Complete Electrode Model is also known to have
a unique solutiong € H'(Q). In fact, a whole section
in the article of Somersalo and others (1992) is
dedicated to the existence and uniqueness of the
solution of this model.

Reconstructing images in electrical impedance tomography

Solving the forward problem

We considered the simple case where is the
rectangular region [0,1] x[0,1] and that the con-
ductivityo is piecewise constant over (0, i.e.,

0-1' (x’y)eﬂa'

g =40y, (x;J/) € Q-b » (7)
o3, elsewhere,

where O, and (), are disjoint, rectangular subregions
of 0. We took the values o/s from Table 1, which
lists the actual conductivities of the human blood
and internal organs (Gray 2002). We chose 6, = 1
(conductivity of the lungs during expiration), o, = 2.8
(conductivity of the liver) and o3 = 6.7 (conductivity
of the blood). We assumed that L =32, i.e., and that
current was injected to Q at 32 locations of the
electrodese,.

Table 1. Conductivities of healthy tissues

Tissue Conductivity (mS/cm)

Cerebrospinal fluid (C.S.F) 154
Blood 6.7
Liver 28

Skeletal muscle (longitudinal) 8
Skeletal muscle (transverse) 0.6
Cardiac muscle (longitudinal) 6.3
Cardiac muscle (transverse) 23
Neural tissue 1.7
Grey matter 35
White matter 1.5

Lung (expiration) 1
Lung (inspiration) 04
Fat 0.36
Bone 0.06

We solved the partial differential equation (1) with
boundary conditions (3)-(5) using the FEM. The two-
dimensional domain Q was decomposed into elements
Q. and in each element the unknown potential was
represented by a linear function. Where the elements
intersect, they are required to intersect only in whole
edges or at vertices, and the potential is assumed
continuous across edges. The FEM generally
converges to the (weak) solution of the partial
differential equation as the elements become more
numerous.

Science Diliman (July-December 2012) 24:2, 50-66



Mendoza, R.G. and Lope, J.E.C.

Meshing was performed to discretize the geometry
created into elements using a set of grids or nodes.
Triangulation was found to be a flexible and well-
established way to create meshes with triangular
elements. Taking into account that o is different for
Q, and Q, and that the L = 32 electrodes were posi-
tioned at the boundary, one possible triangulation of Q
is shown in Figure 1.a.

Generally, the boundaries of €, and {4 do not co-
incide with the grid. Thus, we retained the triangulation
in Figure 1.a and added few elements at the boundary
of Q, and Qp. Figure 1.b shows the triangulation at
the boundaries of Q, and Q.

When creating a mesh, each node must be properly
numbered. If we have a mesh with a 35 x 35 grid then
we have at least 1225 nodes and 2312 elements. This
is because the nodes and elements at the boundary of
the interior cavities are not yet included. One way to
number the nodes and elements of the mesh is to retain
the numbering of the first mesh (Figure 1.1) and just
add the nodes and elements created by the boundaries
of (1, and Q, (Figure 1.2). This means that the lo-
cations of the interior cavities can be arbitrary.

We now present the variational formulation of (1). We
take any v € H(Q), multiply this to (1) and integrate
over (),

f —vV - (oV¢)dA = 0. ®
£

Applying Green’s theorem and the Divergence theorem,
we get,

f qub-VvdA:f oV¢ -nvdS. 9)
Q a9

In view of the boundary condition in (4), we further
have,

oVo -nvds.
(10)

f JVd)-VvdA=f aVcb-nvdSzf
Q an

r

Assuming thatz, # 0on e, we may write (5) as,

1
oV -n=—(V,— ¢). (1
Z

e \\' 4

Figure 1.a. A triangulation of the body 0 with cavities
Qa and Qb
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Figure 1.b. A triangulation at the boundaries of Q,and
0,
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So (10) becomes,

L L
1 1
fav¢-deA+2f —¢vdS—Zf Z VwdS = 0.
a = Y % e 7l

(12)

This is the variational formulation of (1). The goal
is to find ¢ € H'(Q) such that (12) holds for all

v € H'(f)). In our approximation, we will us¢ the
conforming Galerkin approach. That is, we will find a
solution @ in a finite-dimensional closed subspaceV,
of H*(Q) such that (12) holds for all v € Vi,. We can
chooseV, to be the span of the basis{w,}\, that would
approximate the potential ¢. A natural basis is the
linear function with value 1 on the ith node and 0 on
the other nodes. With this, ¢ can be approximated by,

¢~ i(biwi )
=1

(13)

where N is the number of nodes. The vector
(¢1, ..., Pn)" 1s the discrete approximation of the
potential ¢. We approximate v using the same
{wl, . ie. let v=> vw. Together with (12) and
(13), we obtain,

N L L
1 1
Z{f UVWl'VWI-dA-FZJ. _WLW}dSl_ {f —w/dS}Vlzo
Z Z
= 0 = e “ =7 e A
(14)
With known total current on each electrode and the

assumption that z, is constant on e, we can combine
(3) and (5) to get,

! W, )ds

PO ¢

I =f
N
L e, ZU
:—el —
Z ¢ ’ e

j=1 "¢

!
! d5}¢

—w, .
7 J (15)

where le,| is the length of the Ith electrode.
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Equations (14) and (15) yield the linear system,

[MW+TZ 114)/] m = [?] (16)

where D = diag(|e,|/z) and the other matrices have
components given by,

M;

f aVw; -Vw} dA,
Q

W[/‘

a7

Il
|
-
N
=
QU
)

Since o is piecewise constant and because of the way
we triangulated Q, ¢ is constant in each element. This
is advantageous because o can be taken out of the
integral over each element k. Moreover, the quantity
Vw; - Vw; is constant because our basic functions are
linear. These considerations imply that,

g, (Vw; - Vw,) ||,

(18)

D)=

K
j ani-ijdA=Zokf VW, Vw, dA =
9] Q

k=1 k

x~
]

1

where K is the number of elements and oy is
the conductivity on Q.. Observe that the quantity
(Vw, - Vw,)IQ| depends on the mesh but not on g, so
it can be precalculated. This observation would save
us a considerable amount of computation time.

Because 7, can be any positive constant value we chose
it to be 3. We chose the value of | to be either 1 or -1.

By doing this (6) is satisfied.

If we have N nodes and L electrodes, then the matrix of
the linear system (18) has dimensions (N + L) x (N + 1),
and is sparse because the nonzero row entries of the
matrix A depend only on the neighbouring vertices
connected to any given vertex by an edge. Because of
this sparseness, the system (18) was solved by LU
factorization. We used the lusolve command in Scilab.
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Solving the inverse problem

The inverse EIT problem, also known as image
reconstruction, is the recovery of the coefficient o in
the elliptic PDE (1) given the boundary data /, and V/
on each electrode. Since it is logical to assume that a
body has a unique conductivity distribution, the solution
to the inverse EIT problem exists. However, it is known
that the EIT problem is severely ill-posed, that is, small
changes in the boundary voltages give arbitrary large
changes in the conductivity distribution.

The methods used for solving the reconstruction
problem search for an approximate conductivity
distribution by minimizing some sort of residual involving
the measured and calculated boundary voltages. We
define the operator F by F(x,0) = V which gives the
boundary voltages V of any arbitrary conductivity
distribution o with geometry x (that is, locations of the
subregions Q, and @ inside ). V is computed by
solving (16).

In this study, we used evolutionary optimization methods
to solve the reconstruction problem. We iteratively
reconstructed an image that fits best the measured
voltage V™ at the /th electrode. At each iteration, we
calculated the voltages at each electrode F,(x,0) =V,
that correspond to the present state of the reconstructed
image. By minimizing the relative error between the
measured and the calculated voltages, we expected
the reconstructed image to converge with the original
image. In other words, we minimized the cost function,

L m_ 2
C(x,0) =Z<%,;(xa)> .

i=1 t

(19)

This minimization problem is now an unconstrained
problem in several variables. We can treat this problem
differently:

* We can assume that the geometry is known. This
means that we only have to solve for the conduc-
tivities 6,06, and o; at Q,,Q, and M\ UQ,),
respectively. Therefore (19) is now an unconstrained
optimization problem in 3 variables.
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¢ We can assume that the conductivities 01,02 and
03 are known. We then try to locate the 2, and
Q. Because these regions are both squares, to lo-
cate them, we can simply find their centers (h , k)
and (h,, k,), and their dimension 2s, and 2s.. Hence
(19) is now an optimization problem in 6 variables.

* We can assume that both geometry and the
conductivities are unknown. Thus, we have to solve
the optimization problem in 9 variables.

To minimize (19), we used the Genetic Algorithm
hybridized with the following optimization methods; the
Nelder-Mead Downhill Simplex method, a Quasi-
Newton method. and the Simulated Annealing method.
We briefly discuss below the implementations of these
methods.

The Genetic Algorithm (GA) is a probabilistic method
based on Darwin’s Theory of Evolution. An initial
population is generated and this population is
transformed into a “better” population per iteration. This
transformation consists of processes that resemble
biological phenomena such as natural selection,
reproduction, and mutation. GA starts with an initial
population. For example, if we are optimizing a cost
functional of 3 variables, the initial population consists
of vectors of size 3. The members of the population
serve as our initial guesses. The number of population
is usually 8 to 9 times the number of variables. A natural
selection is performed by finding the individuals with
low function values. A percentage of the population
(selection rate) is then rejected based on the value of
their cost functional. Naturally, those members with
high cost function values are rejected. Reproduction is
implemented next. This involves randomly selecting two
parents from the mating pool, which is the set of all
members who survived the selection process. These
two are then used to create new offspring. The next
step is mutation. This means that a percentage of the
new population will be replaced by random individuals.
This will ensure that the method will not get stuck in a
local minimum. We also perform elitism: a method by
which the best individual in the current generation
cannot be replaced by mutation. This new pool of
individuals will comprise the new generation and the
process is repeated.
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One advantage of the GA is that it approximates not
just a minimum but a global minimum. Although
convergence properties of the GA are not
mathematically established, it has shown good
performance in practice. In our implementation of GA,
we used the following parameters: 0.5 for the selection
rate and 0.1 for the mutation rate. Moreover, we used
Michalewicz’s non-uniform mutation, i.e., a member
p: of the population randomly mutates into either
p; + §(max(pop) — pi) or p; — 8§(p; — min(pop)) where
pop is the current populationd = y(1 — gen/maxgen)?,
y is a random number in (0, 1) and B is the weight
exponent, which can range from 1.0 to 5.0 but we set
equal to 2.0. This type of mutation is mentioned in
Cormier and Boudreau (2001) and da Silva Barra and
others (2006). To deal with the ill-posedness, we limit
our search space to +20% of the true value of the
desired quantities.

One problem with GA is that it needs a lot of function
evaluations. For instance, for a population of 50 and a
number of generations of 100, 5000 function evaluations
are needed. This study will involve as few evaluations
as possible to cut down on computation time. This is
the where the local minimizers will be helpful. The
Nelder-Mead Downbhill Simplex method, a Quasi-
Newton method and the Simulated Annealing method
will do the rest of the optimization. The role of GA is to
put the estimate in the right valley and the local
minimizers will reach the minimum with better accuracy
and speed.

Nelder and Mead’s Downhill Simplex method is a
simple iterative, multidimensional minimization method.
It does not require the existence of the derivative and
instead uses function evaluations to obtain the minimum.
At the beginning of each iteration, » + 1 linearly
independent points labelled x, x,, ..., x,_ are
considered. These points are ordered so that
fltst) = f(x,) =+ = f(xy). These points will serve as
vertices of an #-dimensional convex volume called a
simplex. The method will then attempt to enclose the
minimum inside the simplex. Each iteration produces a
new point that will replace x |, the point where the
function value is highest, thus creating a new
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simplex. The algorithm stops if either of the follow-
ing criteria is satisfied: (a) Z Ifa ) ~fxdl <€ or
(b) lez fIx, —x;. 1l < ¢ for some tolerance €. The first
criterion is used to check if the function value has
decreased enough while the second criterion is used to
check if the current simplex is small enough.

Although the inverse EIT problem is severely ill-posed,
the cost function is still smooth, hence we can attempt
a gradient-based algorithm. One problem with this
approach is that near the minimum, the cost function is
almost flat. However, with a good starting point this
method could prove effective. Different gradient-based
algorithms are available but in this work, we limit
ourselves to a method that only uses the first derivative
information of the cost function. One such method is a
Quasi-Newton method that uses the BFGS updating
formula, named after its developers Broyden, Fletcher,
Goldfarb, and Shann. This method will be subsequently
referred to as the BFGS Quasi-Newton method. In
Xg-1 + Og—1Pk-1
where -1 is the step length and Px-1 is an ap-
proximation of the Hessian using only the first deri-
vative. We terminate this method when either:
(@) lIxx — x¢-1ll <€ or (b) [f(xx) — f(x)| <€ where € is
the tolerance.

this method we use estimate Xx =

Simulated Annealing (SA) is a probabilistic method
proposed by Kirkpatrick and co-workers that mimics
the annealing process: a substance is heated above its
melting temperature and then gradually cooled to
produce the crystalline lattice that minimizes its energy
probability distribution. Suppose our estimate of the
minimum is x,_; and let Xx = x,-1 + Ax be the new
estimate obtained from the old. In most minimization
methods, if f(x;) > f(x,-1), then x_is rejected, but in
SA it is accepted with a probability of e (-2 /G
where 7, decreases as k becomes large. This allows
SA to reach an approximation to the global minimum.
SA is terminated when either: (a){|x, — x4l < € or
(b) |T,| < € where eis the tolerance.

Because the minimum lies in a flat valley, we chose
the tolerance € to be of order 10, Detailed discussions
of all the above methods may be found in Haupt and
Haupt (2004), Fletcher (1980), or in other texts on
optimization.
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Since the study uses Hybrid GA, the need to find an
accurate solution upon its implementation is eliminated.
Also, this study would like to keep the number of
generations to be as small as possible. To determine
how many generations will be used, the researchers
checked the function value and the change in function
value at the best individual of the population. Figure 2
shows the convergence of GA for the case when the
conductivity values are given and the geometry of Q is
known. Note that after SO generations, the function
values of the best individuals did not change much, a
signal to terminate GA. This was also observed after
several more runs. So we decided to let GA run for
only 50 generations. Likewise, by observing the
convergence of GA in the case when the geometry of
0 is given and ois unknown, we terminated GA after
20 generations. Finally, in the case when both the
geometry and the conductivity distribution of Qare
unknown, we terminated GA after 100 generations.

Because we intended to compare different hybrids of
the GA, we deemed it reasonable to store the results
obtained from the GA and use the same starting point
for all the local optimizers. When shifting from the GA

to the Nelder-Mead method, we used the best member
of the GA population to generate the initial simplex that
consisted of # + 1 points. Moving from the GA to ¢ither
the BFGS Quasi-Newton method or the SA method
was not a problem because both methods only needed
one starting point.

We note that while we used the standard way of
implementing the Nelder-Mead and BFGS Quasi-
Newton methods, we used a different updating formula
in our implementation of the SA. The usual update is
simply X« + Bu_ where u is a random unit vector in
[—1, 1] and B is a constant vector which defines the
maximum change allowed in each variable. Instead of
this, we used the update x; + pu(1l — k/max{k}), an
original innovation based on the observation that as the
number of iterations reaches the maximum allowed,
the change in x, will be minimal. In other words, we do
not want the next iterate to go too far away from the
current approximate solution.

All numerical simulations were implemented in Scilab,
an open-source program for numerical computations
freely downloadable online.

2e-011 -

1011

0e+000 T v Y v T v T

Figure 2. Convergence plot of the GA for the case when ¢ is given but the geometry is unknown
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NUMERICAL RESULTS

As discussed in the previous section, the following
cases were studied:

1) recovery of'the conductivities when the geometry
of (is given:

2) reconstruction of the geometry of Q when con-
ductivity values are known; and

3) simultaneocus recovery of the conductivity
distribution and geometry reconstruction of (1.

In all these cases, we used hybrids of the GA. We
implemented the GA first and then used different local
minimizers to finish the rest of the optimization. We
compared the performances of three hybrids of GA
first with the Nelder-Mead method, then with the BFGS
Quasi-Newton method, and finally with the Simulated
Annealing. In each of these three cases, we performed

ten (10) runs for each hybrid of GA.

Reconstructing images in electrical impedance tomography

Recovery of the conductivities

Here the exact location of Q, and (, are both given.
The goal now is to find the conductivities inside these
cavities and the conductivity outside them. Let the
conductivities of Q, ,Q, and Q\ (Q, U Q) be 01,0,
and o5, respectively. The actual values used are
0, =10, 0, =28 and o3 =6.7. The recovered
conductivities by the three hybrids of GA are shown in
Tables 2, 3 and 4.

On average, the hybrid of the GA with the SA obtained
the best results. Of all thirty runs, the best result was
also obtained by the GA-SA hybrid with cost equal to
1.660 x 107**. and with ¢y = 1.002, g, = 2.799 and
o3 = 6.700. Without the use of the SA, the values of
the conductivities estimated by GA alone were
o, = 1.040, o, = 2.749 and o; = 6.693 . Although
the cost functional of these values is 2.641 x 10712,
we can see that using a hybrid of the GA with the SA
gave a more precise approximation. The approximated
conductivities are within 1% of the actual values.

Table 2. Recovered conductivities using GA with Nelder-Mead method when the geometry is known

Run o o, T3 Cost
1 1.002 2,798 6.700 1.672 x 1014
2 1.008 2.780 6.700 3.415 x 107
3 1.037 2738 6.698 30,10 x 107
4 0.979 2.858 6.700 18.91 x 10™1*
5 0.978 2.857 6.700 18.60 x 1014
6 1.022 2.822 6.697 22.98 x 1071
7 1.002 2.799 6.700 1.661 x 1071*
8 0.980 2.839 6.701 12.88 x 1071*
9 0.997 2.810 6.700 2.355 x 10714
10 1.001 2.800 6.700 1.658 x 1071*

Mean 1.001 2.810 6.700 11.42 x 10714

The run with the least cost is in boldfaced characters.
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Table 3. Recovered conductivities using GA with the BFGS Quasi-Newton method when the geometry is known

Run o 0, 03 Cost
1 1.000 2.803 6.700 1.743 x 1014
2 1.009 2.778 6.700 3.830 x 107
3 1.025 2.734 6.699 22.16 x 1071
4 0.980 2.859 6.700 18.68 x 10714
5 0.998 2.808 6.700 1.991 x 1071
6 1.005 2.790 6.700 2.058 x 10~
7 1.002 2.798 6.700 1.661 x 107
8 1.001 2.799 6.700 1.662 x 1071
9 1.000 2.801 6.700 1.678 x 1071*
10 1.001 2.799 6.700 1.657 x 10714

Mean 1.002 2.797 6.700 5.712 x 10714

The run with the least cost is in boldfaced characters.

Table 4. Recovered conductivities using GA with SA when the geometry is known

Run o 0, 03 Cost
| 1.002 2.796 6.700 1.720 x 107+
2 1.004 2.800 6.700 1.844 x 107
3 1.004 2.791 6.700 1.951 x 10714
4 1.001 2.798 6.700 1.686 x 1071
5 1.002 2.802 6.700 1.808 x 10714
6 1.002 2.803 6.700 1.835 x 10714
7 1.002 2.799 6.700 1.660 x 107'*
8 1.003 2.795 6.700 1.753 x 1071
9 1.002 2.796 6.700 1.710 x 1071
10 1.001 2.799 6.700 1.679 x 1071*

Mean 1.002 2.798 6.700 1.765 x 107

The run with the least cost is in boldfaced characters.

Geometry reconstruction

Suppose that the locations of &, and @ are both un-
known but the conductivities are known as o, 0, and
o3. Let (4, k) and (h,, k) be the centers of the
squares (1, and {1, with sides of length 25 and 2s.,
respectively. The actual values are (4, k) = (0.35,
0.45), (h,, k,) = (0.54.0.76), s, =0.13 and 5, = 0.1.
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The reconstructed geometry by the three hybrids of
GA are shown in Tables 5, 6 and 7. On average, the
hybrid of the GA with the SA obtained the best results.
As in the previous case, the best result among the thirty
runs was also obtained by the GA-SA hybrid with cost
1.542x 107" and with (h, k) = (0350, 0.450),
s, = 0.130, (A, k) = (0.540, 0.760) and s,= 0.100.
These are within 1% of'the actual value, which is better
compared to the results obtained by da Silva Barra and
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others (2006), in which the best residual they obtained
was 14.8%. Moreover, the result from the hybrid of
the GA and the SA is a considerable improvement
compared to the result when the GA is implemented
alone. Without the SA, the approximated solutions are:

Reconstructing images in electrical impedance tomography

(h, k) = (0.361, 0.465), s, =0.136, (h, k) =
(0.520,0.824) and s,= 0.087. The obtained geometries
by the three hybrid methods are illustrated in Figures 3
and 4.

Table 5. Reconstructed geometry using Hybrid GA with the Nelder-Mead method
when conductivity values are known

Run (hy, k) (hy, k) 51 Sy Cost
1 (0.351, 0.451) (0.538, 0.766) 0.131 0.098 5.967 x 1014
2 (0.347. 0.449) (0.535,0.763) 0.129 0.102 18.50 x 10~
3 (0.363.0.459) (0.528. 0.800) 0.135 0.088 144.7 x 10714
4 (0.352, 0.448) (0.545,0.747) 0.129 0.102 18.12 x 10714
5 (0.347. 0.448) (0.539, 0.755) 0.129 0.102 6.829 x 10~ *
6 (0.356, 0.443) (0.554,0.743) 0.129 0.101 120.7 x 107
7 (0.352,0.453) (0.545,0.757) 0.131 0.099 28.88 x 1071*
8 (0.341,0.441) (0.545,0.735) 0.126 0.109 99.67 x 10714
9 (0.354,0.451) (0.544, 0.759) 0.131 0.098 15.07 x 1014
10 (0.353, 0.452) (0.542, 0.763) 0.131 0.097 16.96 x 10~

Mean (0.352, 0.450) (0.542,0.759) 0.130 0.100 4754 x 10714

The run with the least cost is in boldfaced characiers.

Table 6. Reconstructed geometry using Hybrid GA with the BFGS Quasi-Newton method
when conductivity values are known

Run (hy, k) (hy, k3) S S5 Cost
1 (0.353,0.455) (0.535,0.767) 0.132 0.098 2238 x 107
2 (0.346, 0.450) (0.533,0.767) 0.130 0.101 21.75x 10 **
3 (0.359, 0.463) (0.521, 0.824) 0.136 0.088 247.1 x 10714
4 (0.355, 0.446) (0.551,0.737) 0.129 0.102 71.59 x 10714
5 (0.346, 0.449) (0.540, 0.756) 0.129 0.103 11.50 x 1014
6 (0.359, 0.444) (0.557.0.725) 0.129 0.103 192.6 x 10714
7 (0.352,0.452) (0.542, 0.760) 0.131 0.099 7.979 x 107 t*
8 (0.347.0.439) (0.548.0.726) 0.126 0.109 119.4 x 1074
9 (0.352.0.449) (0.544, 0.767) 0.131 0.097 36.19 x 10714
10 (0.350, 0.450) (0.538, 0.765) 0.130 0.099 5.015 x 10714

Mean (0.352,0.450) (0.541, 0.759) 0.130 0.100 10.81 x 107

The run with the least cost is in boldfaced characters.
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Table 7. Reconstructed geometry using Hybrid GA with the Simulated Annealing method

when conductivity values are known

Run (h],k]) (hz,kz) S1 ) Cost
1 (0.351. 0.452) (0.539, 0.765) 0.131 0.098 4559 x 107
2 (0.349, 0.449) (0.540., 0.758) 0.130 0.101 1.655 x 10714
3 (0.352,0.453) (0.538, 0.769) 0.131 0.097 9.552 x 10~
4 (0.350, 0.450) (0.540, 0.760) 0.130 0.100 1.657 x 10714
5 (0.349, 0.449) (0.540, 0.756) 0.129 0.101 2.542 x 1071
6 (0.349, 0.449) (0.541.0.756) 0.130 0.101 2.182 x 10714
7 (0.350, 0.450) (0.540, 0.760) 0.130 0.100 1.542 x 10714
8 (0.348, 0.448) (0.541, 0.753) 0.129 0.102 5.044 x 10~
9 (0.351,0.451) (0.539. 0.762) 0.130 0.099 2479 x 10714
10 (0.351,0.452) (0.538, 0.766) 0.131 0.098 5941 x 10~
Mean (0.350.,0.450) (0.540.0.761) 0.130 0.100 3.805 x 10~
The run with the least cost is in boldfaced characters.
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Figure 3. The obtained geometry of {1, when the conductivities are known, by the hybrid of GA with the Nelder-Mead
method (blue dotted line), with the BFGS Quasi-Newton method (red dash-dotted line) and the SA method (green
dashed line). The actual geometry of () is the black square (covered by the other colored squares).
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Figure 4. A magnified portion of Figure 3 showing the geometry of ),

Simultaneous recovery of conductivities and
geometry reconstruction

Finally, we tried to simultaneously recover the
conductivities and reconstruct the geometry of Q using
the three methods. This means that the location of Q,
and (), and the conductivities are both unknown. The
obtained results are shown in Tables 8. 9 and 10. On
average, the hybrid of the GA with the SA obtained the
best results. Of all the thirty runs, the best result
was also obtained by the GA-SA hybrid with cost
5.395 x 107!, and with (4, k) = (0.350. 0.446), (h,,
k) =(0.542,0.752), s, = 0.126, s,= 0.100,0, = 0.846,

6, = 2.694 and o3 = 6.702. The obtained geometries
are illustrated in Figures 5 and 6. Note that while the
centers and dimensions of the square cavities are within
3% of the actual values, the conductivities are off the
mark by about 7%. Still, a significant improvement can
be observed from the result obtained by using the GA
alone; (h .k )=(0.368,0.464), (h.k,)=(0.556,0.747),
s, = 0.136, s,= 095. o, =1.123. 0, =2923 and
03 = 6.692. The best results obtained by the other two
methods are not far away from the best result of the
GA-SA hybrid. The cost in the GA-Nelder Mead hybrid
is 6.083 x 10713 while that in the GA-BFGS Quasi-
Newton hybrid is 4.030 x 10713,
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Table 8. Reconstructed geometry and recovered conductivity distribution using Hybrid GA
with the Nelder-Mead method

Run (hy, kv) (hy, k7)) St S 0, o) 03 Cost
1 (0.368, 0.464) (0.556, 0.746) 0.137  0.095 1123 2922 6.694 33.60 x 10713
2 (0.368, 0.462) (0.534, 0.773) 0.138 0.088 1.115 2758  6.705 35.06 x 10713
3 (0.351, 0.441) (0.545. 0.724) 0.126  0.098 0952 2284  6.701 21.75 x 10713
4 (0.376, 0.450) (0.535.0.754) 0.133 0.096 0.898 3.045 6.707 56.73 x 107%°
S (0.351. 0.445) (0.551. 0.725) 0.128 0.108 0983 2904  6.703 12.51 x 10713
6 (0.331, 0.430) (0.533, 0.722) 0.124  0.111 1.104 2403  6.714 2834 x 10713
7 (0.353, 0.447) (0.536, 0.769) 0.132  0.103 1.05 3.143  6.701 6.083 x 10713
8 (0.371, 0.451) (0.556, 0.730) 0.133 0.096 1.045 2.774 6.701 4255 x 107
9 (0.360, 0.448) (0.545. 0.730) 0.127  0.101 0.824 2694  6.703 15.99 x 10713
10 (0.359, 0.467) (0.542, 0.792) 0.131 0.088 0.895 2.843 6.683 21.68 x 10713

Mean (0.359, 0.451) (0.545, 0.746) 0.131  0.098 0999 2777 6.701 27.42 x 10713

The run with the least cost is in boldfaced characters.

Table 9. Reconstructed geometry and recovered conductivity distribution using Hybrid GA

with the BFGS Quasi-Newton method

Run (hy, k1) (hs, k2) S S5 a s P Cost
1 (0.368. 0.464) (0.556,0.747)  0.136  0.095  1.123 2923  6.693 33.84 x 10713
2 (0.366. 0.463) (0.541,0.781)  0.137  0.087 1.104 2785  6.697 1573 x 10713
3 (0.347, 0.432) (0.534,0.732)  0.126  0.102  0.953 2304 6.718 25.07 x 10713
4 (0.368, 0.449) (0.549,0.747)  0.130  0.100 0.890  3.038  6.695 27.03x 1071
5 (0.351, 0.442) (0.543,0.744)  0.128  0.106  0.991  2.937 6.706  4.030 x 103
6 (0.340, 0.438) (0.534,0.721) 0.128  0.108 1.105 2405 6.718 15.99 x 1013
7 (0.355, 0.448) (0.536,0.769)  0.132  0.103  1.050 3.143  6.701 4.759 x 10-13
8 (0.361, 0.439) (0.560,0.737)  0.131  0.100  1.066 2.800  6.700 2628 x 10713
9 (0.350,0.441) (0.547.0.735)  0.124  0.104 0.826  2.695  6.705 4269 x 10713
10 (0.356. 0.465) (0.545.0.793)  0.131  0.089 0.895 2.804  6.682 19.26 x 10713

Mean  (0.356.0.446) (0.544,0.746)  0.130  0.100 1012 2781  6.704 24.47 x 10713

The run with the least cost is in boldfaced characters.
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Table 10. Reconstructed geometry and recovered conductivity distribution using Hybrid GA
with the Simulated Annealing method

Run (h1' kl) (hz, kz) $1 Sy [¢]] o) g3 Cost
1 (0.353, 0.454) (0.539, 0.767) 0.133  0.099  1.049 2.897  6.699 8.843 x 10714
2 (0.360, 0.459) (0.540, 0.787) 0.135  0.090 1.085 2797  6.694 67.79 x 10 *

(0.346. 0.443) (0.542,0.740)  0.127  0.099 0967 2352  6.705 2217 x 10714
(0.356, 0.452) (0.544.0.765)  0.130  0.098 0942 2942  6.697 30.08 x 10714
(0.351,0.447) (0.543.0.747)  0.129  0.105  0.991 2937  6.702 11.59 x 10714
(0.341. 0.439) (0.541.0.726)  0.128  0.108  1.100 2547  6.709 77.77 x 1014
(0.352.0.454) (0.534,0.773)  0.133  0.103  1.048  3.140  6.699 10.78 x 1071
(0.357,0.452) (0.544.0.761)  0.132  0.096  1.044 2783  6.699 29.25 x 10714
(0.350, 0.446) (0.542,0.752)  0.126  0.100 0.846 2.694  6.702 5.395 x 10714

10 (0.357, 0.458) (0.536.0.787)  0.131  0.092 0911 2814  6.694 42,71 x 10714
Mean (0.352, 0.450) (0.540,0.760)  0.130  0.099  0.998 2790  6.700 30.64 x 10~
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The run with the least cost is in boldfaced characters.
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Figure 5. The obtained geometry of () when the conductivities are unknown, by the hybrid of GA with the Nelder-Mead
method (blue dotted line), with the BFGS Quasi-Newton method (red dash-dotted line) and the SA method (green
dashed line). The actual geometry of () is the black square (covered by the other colored squares).
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Figure 6. A magnified portion of Figure 5 showing the geometry of (1,

CONCLUSIONS

We showed that the hybrids of the GA with Nelder-
Mead, the BFGS Quasi-Newton and SA methods could
effectively recover the conductivities given the
geometry, reconstruct the geometry given the con-
ductivities, or simultaneously perform both. Compared
to other optimization methods, GA requires a significant
amount of computational time because of the big number
of function evaluations done at each generation.
However, with the aid of local minimizers, we were
able to significantly reduce the number of generations
needed. just enough for the GA to give the local
optimizers a good initial guess. In our simulations, all
three hybrids came up with very low cost function values
but generally the GA-SA combination obtained the best

results.

Science Diliman (July-December 2012) 24:2, 50-66

This paper considered the case of a square-shaped body
with square cavities but it would be desirable to consider
a more general geometry in future simulations. This
would necessitate the use of a (possibly commercial)
finite element method software. The researchers are
also looking into the possibility of implementing a
regularization procedure to deal with the ill-posedness

of the EIT problem.
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