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ABSTRACT

We define solutions to the differential inclusion x(#) € F(tx) in the Kurzweil sense, using the Kurzweil integral of a
multifunction, and establish an existence theorem for these inclusions under a semicontinuity condition called Property (Q),

and the assumption of integrable-boundedness.

INTRODUCTION

Let F(¢,x) be a nonempty subset of Euclidean n-space
N". The initial value problem

xe F(1x(1), x(0) = x, 0))
is a generalization of the initial value problem in ordinary
differential equations. A solution of inclusion (Eqn. 1)
is defined as an absolutely continuous function ¢, with
$(0) =x, and ¢(t) € F(1,$ (¢)) for almost every ¢ in
aneighborhood of 0.

Inclusions of the form (Eqn. 1) arise in several ways,
perhaps the most familiar one being in the theory of
control systems, when dealing with equations of the
form

x = f(txu), x(0) = x, 2)

Key words: Kurzweil-Henstock Integral, multivalued
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where the control parameter ¥ may be chosen as any
measurable vector-valued function with u(?) €U (t,x)
 R". In this case, the right-hand side of the differential
inclusion is

Fax) ={faxuw |uec Utx) ) 3
Differential inclusions may also arise, for example, from
the consideration of implicit differential equations f{z,

x,x) = 0. Finally, differential inequalities may also be
recast as differential inclusions (Hermes, 1970).

SET-VALUED FUNCTIONS AND
DEFINITIONS

We denote the Euclidean distance between two points
x,yinR"as|x-y|orp(x,y). If4 is a subset of R, the
distance between the point x and 4 is

p(x.4) =inf {p(x,a)-aec A}. @

Forany 4 c R, the closed neighborhood ¥(4,¢) of the
Ais defined as

V(de) = {x € R"| p(x,4) <&l o)

The Hausdorff distance between two sets 4, B in R",
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denoted by h(4,B) is defined as

h(A,B) = inf{e>0| A V(Be) and BC V(4,¢)}). (6)
The collection of all nonempty compact subsets of R"
with the topology induced by the Hausdorff distance is
a complete metric space, and we denote it by Q"

Convexity will be important in what follows. We recall
the definition and emphasize that it is a concept
independent of the topological structure.

Definition 2.1 4 subset of the linear space X is said
to be convex if whenever it contains x, and x, , it
also contains A, x, + A, x,, where A, >0, A, > 0, and
A +HA =L

Definition 2.2 Given a subset A of a linear space X,
the convex hull of 4, denoted co(A), is the smallest
convex set that contains A. (It is also the intersection
of all convex sets that contain A.)

We will use Conv(R") to denote the subset of Q"
whose elements are convex sets.

Measurability is also an important property for set-valued
functions.

Definition 2.3 Let F(t) be a set-valued function
defined on a real interval I, with values in a
separable metric space Y. F is said to be measurable
(in the sense of Lebesque) if, for every closed subset
DcY theset{tel:F@t) nD=J}is Lebesque-
measurable in R'.

The notion of continuity for set-valued functions is
formulated in various ways. We will deal with the
following formulations.

Definition 2.4 F is said to be upper semicontinuous
(us.c.) at x, € X if for any open N containing F(x,),
there exists a neighborhood M of x such that F(M)
C N. F is upper semicontinuous if it is u.s.c. at
every x, € X. (Equivalently, for each closed A c Y,
X\VF' 2" = {x: F(x) " A # O} is closed in X
(Kuratowski, 1966).

Definition 2.5 (Property K) Suppose X is a metric
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space, Y is a linear topological space, and F(x) is a
set-valued map from X to Y. Let x, € X. F is said to
satisfy Property (K), (Kuratowski's concept of upper
semicontinuity) at x, provided F(x,) =  cl F(x
), that is,

0

F(x) = smo cl
>

v FX).
xeNyx)

)

Here, cl refers to ‘closure.’ F(x) has Property (K) if
it does, at every x, € X.

The corresponding definition, suitable for convex sets,
was introduced by Cesari (1983).

Definition 2.6 Property (Q).
Property (Q) at x, provided

F: x > F(x) has

Fix,) = QO cl cgek/ Fix).

fx,)

o7

®)

Here, cl co refers to ‘closed convex hull.” F(x) has
Property (Q) if it does, at every x, € X.

For a discussion on relationships among Properties (K),
(Q) and upper-semicontinuity, see Cesari (1983).

The following theorem does not deal with set-valued
maps. However, it is crucial in proving results on
existence of solutions to differential inclusions, under
appropriate conditions. The theorem is due to Aumann
(1965); a shorter proof may be found in Davy (1972).

Theorem 2.1 Let {x } be a sequence of absolutely
continuous functions x,_: I R" . Suppose that x, (1)
> x(t) ask— o, forallt € |, where x : [ > R", and
| x, (1) < g) ae t € I, whereg: I > Risa
Lebesque-integrable function. Then, x is an
absolutely continuous function such that

&)

it en ceo x ()
i=1 k=i
forae tel

The inclusion may be compared with the condition for
amultifunction to satisfy Property (Q). As will be seen
in the sequel, Theorem 2.1, together with Property (Q)
(or upper semicontinuity), will play a crucial role in
proving existence theorems.



APPROACHES TO THE EXISTENCE
PROBLEM FOR DIFFERENTIAL
INCLUSIONS

As pointed out by Aubin and Cellina (1984), for
differential inclusions, the condition to be imposed on
the set-valued mapping F in order to ensure existence
of solutions are of two kinds: regularity conditions on
the map (the various kinds of continuity or
semicontinuity, for instance), and conditions of
topological or geometric type (compactness, convexity)
on the images of points. Various combinations are
possible, and one case is considered by Davy (1972).
His assumptions are that F maps from [a, b] x R" into
Q" ; F(1,x) is convex; the mapping x — F(t,x) is upper
semicontinuous on R" forall r € I; for allx € R", there
exists f : I — R" such that f, is measurable and £(¢) €
F(tx); and there exists g € L'(J) such that y € F(tx)
implies that |y| < g(1). With these assumptions, the
following existence theorem is proved:

Theorem 3.1 There exist solutions to the inclusion

x € Fx), x(0) =x,. 10)
Trajectories are also shown to satisfy properties proven
for solutions of ordinary differential equations, namely:

compactness, Kneser’s and Hukuhara’s property.
p prop

In the case considered by Davy (1972), although no
reference is made to an integral inclusion formulation
of the differential inclusion, it is the case that, with the
integral of a set-valued function appropriately defined,
the differential inclusion is equivalent to an integral
inclusion. The integral used in the inclusion is an Aumann
integral, defined as follows:

Definition 3.1 (The Aumann Integral of a Set-Valued
Map) Let I be some closed interval [a,b] . For each
t € I let F(t) be a non-empty subset of Euclidean
space R" . Let 8 be the set of all point-valued
Sunctions f from I to R" such that f is Lebesque-
integrable over I and f(t) € F(t) for all t € I Define
[ Fwat:= ([ fwdt|fe9), 11)
the set of all integrals of members of S. This integral
will also be denoted by (4)] , F@) dt.

An Existence Theorem for Differential Inclusions

The Aumann integral is the most well-known integral
considered in the theory of integration of set-valued
maps. Clearly, the question of the nonemptiness of the
integral depends on the existence of selections, that is,
of single-valued functions each of whose values belong
to the corresponding set, i.e., f{t) € F(t). There is a
long literature concerned with such selection problems
(Aubin and Cellina, 1992; Deimling, 1992; Castaing and
Valadier, 1970; Wagner, 1977) In this paper, we will
rely on a theorem of Kuratowski and Ryll-Nardzewski,
which can be stated as follows:

Theorem 3.2 (Kuratowski and Ryll-Nardzewski). If
(X, p) is a separable complete metric space and F:T
— 0 (X) is measurable and has closed values, then
F has a measurable selector.

For a given set-valued map F on and interval I, F is
said to be integrably bounded if there exists a single-
valued Lebesque-integrable function g(7) such that for
t el |y <g(t) whenevery € F(t). If F is measurable
and integrably bounded, then | F is non-empty.

For Aumann integrals, the equivalence of the differential
and integral inclusion is well-known. For example, in
Aubin and Cellina (1984), the following lemma is proven
(Castaing and Valadier, 1970):

Lemma 3.3 (Integral Representation) Let F be an
upper-semicontinuous map from I x R" into the
compact convex subsets of R". Then the continuous
Sunction x is a solution on I to the inclusion

Xt € F@, xt) (12)
if and only if for every pair t and t, € 1,
x(t) € x(t) + 1,7 F(sx(s)) ds. (13)

While the Aumann integral seems to be sufficient in
many instances when integrals of set-valued functions
are used, a natural question that arises, from the
Kurzweil-Henstock generalization of the Lebesque

. integral of a point-valued function, is whether a similar

generalization can be made, which includes the Aumann
integral. Such a generalization was in fact initiated by
Artstein and Burns (1975), and their construction was
further modified by Jarnik and Kurzweil (1983). In the
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next section, we will outline their generalization, which,
as we will see, follows the Riemann-sum type of
construction made in the single-valued case. In view of
that generalization, one can raise the following question:

If we allow all solutions to the integral inclusion

x(t) € x(t) + | F(s.x(s)) ds 14)
(with the integral on the right interpreted as the Kurzweil
integral), to qualify as solutions to the differential
inclusion

x(1) € F(t, x(t)) as)
in some interval containing ¢, and if we in fact define
the differential inclusion (Eqn. 15) to mean integral

inclusion (Eqn. 14) (i.e., their solution sets coincide),
are we broadening the class of solutions?

We will investigate the ‘new’ differential inclusion, after
we describe the integral of a set-valued mapping
constructed by Jarnik and Kurzweil (1983).

THE JARNIK-KURZWEIL INTEGRAL
OF A SET-VALUED MAPPING

A partition of the interval I := [a,b] is a collection
A={@,la,.aD),j=1 ..ka=ax<a <. <qg= b},
and a gauge on [ is defined as a positive real-valued
function & : I = (0, ®). A is subordinate to
(briefly: A sub 8) if

la,.alc (- 8(tj), £+ 3()),J =1, k. (16)

The Riemann sum for F corresponding to a partition D
is

SOF, 8):= {5, " ¢, (@-a )| & € F).j =1, ... By (A7)
For brevity, one writes S(F, A):= ij‘ kF t)(a;-a.),
using the usual definition of the sum and multiple of

sets.

For a multifunction F, denote by ®(F) the multifunction
with the following properties:
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(1) ©(F)(y is a closed subset of R", for all £;

(2) ©(F) is measurable;

(3) O(F)(t) < cl F(t) for almost every ¢; and

(4) ®©(F) is maximal in the following sense: if U'is a
multi-function satisfying conditions (1)- (3), with &(F)
replaced by U, then Urt) <« ©(F)(t) for almost every ¢.

The following theorem is due to T. Rzezuchowski (1980)
and is given by Jarnik and Kurzweil (1983) in modified
form:

Theorem 4.1 Let A < R be a bounded, measurable
set, and F: A —» g (R"). Then, O(F) exists.

Following Jarnik and Kurzweil (1983), we define an
operator @ associating pairs (F,]) with elements of
@ (N"). For I'=[a,b], F amultifunction F:I - @ (R"),
and S(F, A) the Riemann sum for F corresponding to
the partition A, ®(F,]) is defined by

OF.D = {ze R"|VW-¢>0, 3 gauge 5 such that

A sub d = p(z, S(F, A)) < €}. (18)
Note that (FED)=n_ v - W(SF Ag),
where W(S(F, A),g) is the SpenAs—n%ighborhood of'
S(F, A).

The following theorems and their proofs may be found
in Jarnik and Kurzweil (1983):

Theorem 4.2 Let F: [ - o (R") be a mapping for
which F(t) is bounded for all t € I Then the set
O(F,) is closed and convex; it is compact provided
F is integrably bounded.

Theorem 4.3 Let F: [ — g (N") be such that F(1) is
bounded for all t € 1. Then ®(F,1) = O(cl co FI).

Theorem 4.4 Let F: I >  (R") be measurable,
integrably bounded, and let F(t) be compact and
nonempty for t € I Then,

(A, F) dt = O(FI), (19)

The integral on the left side of the equality is the
Aumann integral.

Jarnik and Kurzweil (1983) formulate a definition of



the integral of a multifunction in the following way:

Definition 4.1 Let I = [a,b], and let F: I — g (R").
Then
)

f, F@o de := rg'f O(F[o @0)

=1 !
-The intersection is taken over all finite
decompositions D of the interval I If A ¢ R is
bounded, then for F: 4 - g ("), define |, F(y) dt.=
| » F, @) dt, where I(4) is a compact interval,
Acl(4), and F, :I(4) —> g (R") is defined by

FA ) = {F(t)’ Jort e 4, 1)

{0} otherwise.

A first but important observation is that, unlike the
Aumann integral, this definition is direct in that it does
not depend on the Kurzweil integral for point-valued
mappings, and so does not depend on a selection
_theorem.

From this point on, when no qualification is made, the
integral of a set-valued function refers to the Kurzweil
integral. From the definitions, Theorems 4.2 and 4.3, it
is noted that, without any assumptions on F,
I, Fo dic |, Fo ar, 22)
that the integral | , F(v) dt is convex and closed (compact
if F is integrably bounded) and, moreover, | , F(yde=
[, clco Fy) dt. Since F(y) < cl F(t) < cl co F(t), we
also have

[, Fatc |, cl F@) at (23)

Finally, if F'is measurable and integrably bounded, then
(A, cl F(y) dt = OF.I). 24
Consequently, if I = [a,b], a < ¢ < b, then by the
properties of the Aumann integral, we have ®(F, [a,c])
+ O(F, [c,b]) = D(F,[ab]), which yields
I, F@ dt = ®F.D). @5)

From the preceding results, we see that if F'is a closed-
valued, measurable, integrably-bounded multifunction,
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the Aumann and Kurzweil integrals coincide.

The main result in Jarnik and Kurzweil (1983) is the
following theorem:

Theorem 4.5 Let A ¢ R be measurable and
bounded. Let F: A — @ (R") be integrably
bounded. Then,

o ®(lcoF)@dic|, F)d. (26)
Moreover, M:= © (cl co F) is measurable and
integrably bounded, and we have

A, MO dr =], M) de = M, I(4). @7
Corollary 4.6 Let X" denote Conv(R") LU {J}.
Suppose F:1 — X" is integrably bounded. Then,

(A, Fo dit =], F@ . (28)

AN EXISTENCE THEOREM FOR
DIFFERENTIAL INCLUSIONS USING
THE KURZWEIL INTEGRAL

The last section of Jarnik and Kurzweil (1983) is devoted
to adiscussion of a generalization of the classical result
on the equivalence of a differential equation and the
corresponding integral equation to differential inclusions.

IfF:IfF: Ix R"— Conv R" is amultivalued mapping,
the function x: J - R", (J < D) is a solution of

xe F(tx) (29)
if it is absolutely continuous and
x(t) € Ftx(t) fora.e. t € J. 30)

The set of all solutions of (5.1) is denoted by Sol F. On
the other hand, Int F denotes the set of all functions x:
J— R", Jc Ian interval, such that forany ¢, t+h € J,

x(t+h) - x(t) € | Fix(t) du @31
holds. The final theorem by Jarnik and Kurzweil (1983)
is the following: ‘
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Theorem 5.1 If F: I x R" — Conv R" is integrably
bounded, then
Sol F = Int F. 32)
Remark 5.1 If one considers the conditions on
F(tx) under which Davy (1972) proved an existence
theorem for the inclusion

x(t) € Fitx), x(t)=x, (33)
then in view of Theorem 5.1, no substantial
generalization is achieved from considering the
integral formulation (Eqn. 31) as a substitute for
the differential inclusion. We will then consider a
weakening of Davy’s conditions, and proceed to
consider the integral inclusion for solutions.

For a set-valued map F: I x R" - o R\ {J}, we
introduce the following notation: #is the set-valued map
with Atx) = cl co F(t,x) for (t,x) € I xR".

In this section, we assume that I = [a,b], F: I x R" -
PR\ {D} is a set-valued mapping satisfying the
following conditions:

(1) (C1) Atx) > cl co F(tx) satisfies Property (Q)
with respect to x, and
(2) (C2) F(t,x) is integrably bounded, that is, there
exists g € L'(Z;R) such that whenever y € F(t,x),
then 1y] < g(1).

Remark 5.2 Condition (C1) is more general than
the condition that F(t,+) : x — F(1,x) satisfies Property
(Q) (with respect to x). Note that whenever F(t,.) - x
— F(t,x) satisfies Property (Q), then F(t,x) is
necessarily closed and convex, and so F(tx) =
Atx). Thus, if F(t,x) satisfies Property (Q) with
respect to x, necessarily, condition (C1) holds. The
converse is not true, as the following example
illustrates:

Example 5.1 Consider the multifunction F(x), such
that

-1} if x>0
F) = 2 {-1,1}if x=0 (34)
{1y if x<0
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The map F(x) does not satisfy Property (Q), since
F(0) is not convex. However, F(0) = [-1,1], and it
can be shown that 7 satisfies Property (Q).

With reference to condition (C2), we require integrable-
boundedness because Kurzweil’s result allows a
reformulation of the Kurzweil integral ) , F(t) dt as an
Aumann integral if F(?) is integrably bounded. In this
case,

|, Fsx(s) ds = (9 |,© Z(s.x(5)) ds. (35)
We define solutions to the differential inclusion (5.5) in
the Kurzweil sense in the following way:

Definition 5.1 x is a solution to Inclusion (5.3) if
and only ifx : [ - R" is absolutely continuous and
x(®) - x(t) € (R) [,! F(sx(s)) ds, that is, under the
assumption of integrable-boundedness,

i) € O( Atx(®) ae tel andx(t) =x, (36)

We denote the set of solutions by H(z ,x,).

We will make use of the following results in what
follows:

Proposition 5.2 Suppose I is a compact interval,
F: I > o @R") is a multifunction, and x: I —> R" is
absolutely continuous in 1. Suppose almost
everywhere in I. Then, almost everywhere in I

Proof: Define U: I — g (R") in the following way:

U = {{f(f)}, when f.(') < 37
J, otherwise
Observe that Uf?) is a closed subset of R" for all ¢,
since sets which are either singletons or & are closed.
Moreover, U is a measurable multifunction; for if D is
a closed subset of R", then
ftel|lUOND=B}=ftel|z®)"D=D}),  (38)
and the latter is measurable, because x(.) is measurable.
By hypothesis, since x(2) € A?) a.e., and F(¥) is closed,
we have



W) =UW) c c AY ae, 39)
(provided x(2) < oo; otherwise, & < At) since At) is
itself closed.)

Thus, by the maximality of ®(A1)), we get Ut)
® (A1) a.e. Hence, x(1) € © (AY). g.e.d.

Lemma 5.3 Suppose F has non-empty values in
P(R") and whenever y € F(1,x), |y| < g(t), where g is
an &' function. Then, w € At,x) also implies that
lwl < g

Proof: Let w be an arbitrary element of Z7,x). Then,
there exists (w,) c co F(t,x) such that w, — w. For
eachk, w, € co F(tx). Thatis, w, =2 _ ™ A ®z®
where 2 ® € F(1x) and ,, ® 2 0 for eachiand ¥ _,
A, ® ="1. Note that z. ™| < g(2). Hence,

Wl =1Z.,™ A ©z0 <3 A ®z0 =
TS AGEN ST, A 91, (40)
So, then, | w,| < g(1). As w,—w, we know that given ¢
> 0, there exists N such that k> N implies that |w, - w|
<e

Now,
wi<|wl+|w-w_ | <|w]+e for large k, 41)

hence, |w| < g(t) + €. Therefore, |w| < g(¥). q.e.d.

We now state and prove an extension of the Existence
Theorem in Davy (1972):

Theorem 5.4. Existence of Solutions: For a set-valued
map F: I x R" — o (R"\{D}, suppose that F satisfies
conditions (€1) and (€2). If we denote the set of
solutions of
x € F(tx), x(t) = x, 42)
in the Kurzweil sense by H(t  ,x, ), then H, x, ) is
nonempty.

Proof: The proof follows the scheme employed by
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Davy (1972). Assume that ¢, € I, with I =/a,b].
Subdivide the interval [¢,,b] into & equal parts, by L=t
+ [i ( bl;to) ] We define x,: [£,b] &> R"

inductively. First, x, (¢) = x,. Suppose x, is defined up
to #, where 0 < i <Kk. Select a measurable function A
[£, £,,] &> R"such that £ (1) € O(Atx (1)) foralit e
[¢, t,,]. Such a selection is possible due to the
Kuratowski - Ryll-Nardzewski Theorem. Define

x@O:i=x Q)+l fd, Mret, 1] @3)

Then define f:/t ,b] - R" by

SO =f@®forret, ¢, ] 44)
Hence, x, (1) = x, + (£) I,o‘f. Now, if F(t,x) is integrably
bounded, so too is At,x), see Lemma 5.3. Furthermore,
with @(Atx)) < At x), we conclude that O( At x)) is
also integrably bounded. This implies that | x, ()| <|x,|
+ I:ob 8. So, x, is well-defined, and the sequence {x,}
is bounded.

Now, x,() =f(1) a.e. t € [t,b]. Therefore, | x ()| < g
(1) ae. t € [1,b]. Therefore, {x,} is an equicontinuous
family.

Define y, : [t ,b] - R" by

y@:=x @)ifte ez, ] 45)
Then, x,(t) € &(ALy, (1)) ae. t € [t,b]. Consider
“he sequence {x,}. It is bounded and equicontinuous.
Thus, by Ascoli’s Theorem, it has a convergent
subsequence, and we denote this subsequence also by
{x.}. We then have x, > x e C([t,b]), where the
latter denotes the set of continuous functions on [t.b].
By Theorem 2.1, x is absolutely continuous and

®© o 0 o0
x(t) € Q cl cokk=Jixk t) gif)l cl cokk.)=i O(ALy 1)) (46)
a.e. t € [t,b], since x,(t) € ® (ALy (1))

But y, (1) — x(t). We next observe that @(FAt,x) <
At x), and invoke Property (Q), satisfied by A7,x) with
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respect to x, to conclude that

i) € (3 el co O Ay, 0) < ALx(). @7

So, x(1) € Atx() ae.t € [t,b]. We then apply
Proposition 5.2 to conclude that x (1) € O(ALx(1))
almost everywhere in ft,b]. Furthermore, as x, (¢)) =
x, for all k and x,— x, we get x()) = x,.

Similarly, we can find x: [a,t ] — R" such that x(¢)) =
x,and x (1) € @(Atx(t)) a.e.t € [at ]. Concatenating
these two functions, we have x:[/a,b]>R" and x €
H(t, x, ). Thus,/+(t,x) # O g.ed.
0 0

Example 5.2. Consider the multifunction

{-1} forx >0
F(x)= {{-1, 1} forx=20

{1} forx <0

48)

Take the initial problem x € F(x), x(0p) = 0.

Observe that F is upper semicontinuous, and that
the solutions cannot leave the initial value. But now,
x = 0 is not a solution, hence there is no solution to
the initial value problem in the usual sense. However,
Ax) satisfies Property (Q), and moreover, F is
integrably bounded. Hence, there is a solution in
the Kurzweil sense; one such solution is x = 0.
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