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ABSTRACT

Perturbation is used to enlargen a class of differential expressions for which the essential spectrum and the
nullities can be classified. One such perturbation in the £ — Hilbert space for the differential expressions

M, f takes the form

n-1

Mf= I§0 XGYA

where there exists a B such that the coefficients r, satisfy:

sup x+1

[x,x+1]cI Jx

INTRODUCTION

This section gives the basic definitions and notations
used in this paper.

Denote by 4 (1), for each positive integer n, the set of
complex-valued functions fon I for which f®V=p @D £
exists and is absolutely continuous on every compact
interval of 1. Let A (Z) = C(J).

Definition 1.1

Let M be a differential expression of the form

n

2 a,D®
=0 *

M:

where each a, is a complex-valued function on /.
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r®|?

dt < B
5,(0)

The maximal operator T (M) generated by M in
L,(1) is defined as

D= (/| f e A, (DL, (), MfeL, D}
T,(Mf=Mf- 3 aD®f
k=0

The operator T(M) in L(J) is defined to be the
restriction of T (M) to those f € D, which have
compact support in the interior of I.

Definition 1.2
The minimal operator generated by M in L, D)

denoted by T,(M), is defined to be the minimal closed
extension of T (M) in L, ().
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Definition 1.3

The essential spectrum of M relative to L, (1) denoted
by o,(M) is defined as

o,(M)={Ae T | Z(T(M-1))isnotclosed}
Definition 1.4

The essential resolvent of M, denoted by p (M), is
the set of scalars not in o, (M), that is

pM={A|reC\c (M)}
Definition 1.5

Since & (T (M)) is closed if and only if £ (T,(M))is
closed, then

o (M)={reC@ | & (T,(M-1))is not closed}
Definition 1.6

Let M be a differential expression defined on 1. The
nullity of M, denoted by nul (M), is defined as

nul (M) : = dim (AT (M)

SPECIAL EXPRESSIONS

Consider the differential expression of the form
M f=2% a_t%f® )
o=0

withr € IN, p,"*", p,€ N, and ¢_€ IR (6=0, """,
r) such that

o =0,0,<p, @

and

1> aa: aa-l a’o-+l: ao’ (3)
pa' po’-l po-+1 po'

forl,--,r -lifr>1
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Denote by o, < 0, <*** < o,_, those indices o (o=
1,**, - 1) for which the strict inequality holds in (3)

Then together with g := 0 and o, := 7, we have

R O,= 0,y

- = - @
paj po-j—l pa pa-—l
foro;_1<cr<o;(j=1,"',s)ifs2 1 and
Qo= Cgi-1 _ Y1 Yoy ©
paj—pa'j—l po’j+l_pa'

forj=1,"",s-1,ifs>2

We assume the constants a_e @\ {0} to satisfy the
following conditions:

a_e IR\ {0} for =0, " ,rand

foreachk=/(),,"‘,nwehave
1
c,:= X (-l)p"+kakaX20 ©)
p. P, = 2k
qSk,A.So’Hl

The a_(6=0, ", 0,— 1) may be arbitrary complex
constants.

A condition sufficient for (6) to hold is the following
simpler condition:

sgn ((-1)” maa) = constant for all o> o, such
that p_ is even

sgn ((—1)('00+ Y/ 2ara) = constant for allo> o,
such that p_is odd @)

Definition 2.1
Differential equations of the form (1), satisfying (2),

(3), and (6) is called a special expression of order n
defined on [1, )



The expression given by

&
M,,,f = Eo a_ 1% [

is called the essential part of the special expression
M,

If we plot the points (p_, @ ) € 1IR*(c=0,""",r) in
the cartesian plane 1R2, and connect (p_, ) and
p,,p,,)(c=0,""",r—1)bya line segment, then
we will obtain a polygonal path with kink (corner) points
@ ,a)(i=0,",s-1). We will call the o’s the kink
indices, and the polygonal path constructed, the
polygonal path generated by M.

The polygonal path generated by M , lies on or below
the bisectrix while the polygonal path generated by
M, — M, , lies below the bisectrix.

Definition 2.2

Define the function v : [0, n] —> IR by

Y= (U-p,)a, +, -Da)

o, I 1+ i

where p <I<p_
i i+1°

Then the graph of vy is precisely the polygonal path

generated by M

For the case a,> p,, if we consider expressions of the
form (1) where the polygonal path lies above the bisector,
things become different. We have a situation where
M,, does not satisfy (2) and thus is no longer a special
expression in the same sense. We could however
associate a special expression with it.

Definition 2.3

Expression M, as in (1) satisfying (3) and (6) that are
no longer special expressions, can be associated with a
special expression defined to be

M, f=t 8)

M, f=1 %M, f,

Perturbations of a Class of Ordinary Differential Expressions

where

T=max{ila,—p,=p,a #0}, ©)
and
r=max {i|ie T}. 10

PERTURBATIONS OF SPECIAL
EXPRESSIONS

The perturbation given in this paper was derived from
a lemma in Goldberg [2] specialized in the L, — Hilbert
space setting.

Lemma 3.1

Given the interval I =[1,0) and € > 0, there exists a
K, depending only on e, such that for all r,locally
in L,() and for all f in the domain of the maximal
operator DD (D =§,1 ¢ IN o)

o1, <@, +RIO1) e S
[, xtcl Jx n@rd

an
Proof
Take a compact sub-interval /,

=f1,f]onl

Let I, and I, be non-overlapping sub-intervals of I,
such that I, U I = I with I, "to the left" of L.

Form > 0 such thatforallz € 7: t+n € I and for all
tel:t—n € I,choose p e C'*'([0, n]) so that 0 <
p(@®<1lonf0,n], (0)=1and p(n)=0.

For f® € dom D and t € ], we see that

700 ==, 4(e@ 1O +x)

- ‘ﬁ)n P @) S0 +x)) dx‘—ﬂ"co’ () fO(t+x)) dx.
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Letting M = max | ¢’ (x)|, we obtain
0<x<n
O [0 @ +x)lde+ M [7] £ +x)|de

Sn./z[</(;n'lf(1+1) (t+X)lzdx)|/z +M (/(;"f(')(t-kx)lldx)'/z]

It follows from the Schwarz’s inequality in 1R? that

(filproo v srany) )]

AL GIES A [(1,1) < n
(ML 1Fo @+ ey )

<A@ [ 1O +x) ) + O 7O -+ 0P

<o [(f7 104D (e + 0Py + ML O + 0Py
(12

Taking 7 sufficiently small, it follows that there exists
a K, depending only on € suchthatt e I,

FODI< S L1+ P+ K, 710 + 0

p » t+n
S%/; +rllf(l+1)( e + K‘./; 'f(l)(x)|2dx. (13)

From the conditions put on n we see that as 8
approaches infinity, 1 can be kept fixed so that (12)
still holds.

Thus X can be chosen to be a non-increasing function
of the length of .

Letting a be the left endpoint of 7, (13) implies that

By Fubini's theorem, we have

J; Inoroora

S (S @R KO OF) [, 0P, .,y 00 i
=/, (SR, [IFO@R) [ IO drde
<[ (517K, [1700R) L7 ir(r-m) deax
VACTARICIE WATL (x)l’)[x, s IO s

(l FEDG) R+ / [fOG)[2) dx  sup U lr P de

x+1]ct

(H1) U] x+1
( 1“0, +K SO, ,)dxx ;‘fi]czf Ir,(t)gi;)

For ¢ € I, we have
Lrowl= — /)" & (0@ 10 ¢~ x)ax

Thus, by the argument established in (13), forz € 1,, we
get

0I5 [, 1@k K, [ 170 @k

S, 00wk des [, [ @ (51500 R K £ ) di

L) @R, @ (517000 k SO R dict

Oift>xort+7<x

where Yy, . () = 1ift<x<t+ 7
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As in (13), we obtain
/i, 10 ot

Sf, (517D @R+ KON %) ax [T 1r (o e

€
SGHSN3, +KISO@IE, ) sup

[x, x+1]ct

/"”r(t) dt.
(15)

The lemma thus follows from (14) and (15).

Let us now define a relatively compact perturbation of
special expressions.

Definition 3.2

Let M be a differential expression of the form

n—1
Mf=l=20 IXGYAL . (16)

We say that M is an admissible perturbation of the
differential expression M, if there exists a B such that
the coefficients 7, satisfy the following:

x+1

sup

[x, x+]c I dt < B

)

where r, eC/(J) for =0, ", n—1and 0 <s, is an
auxilliary function s, € C*(J) satisfying

s,(t)=o(t'/’7(1+l)) and s,(t)=0(tl/27([)) 18)
For the invariance of nullities, we can only admit a
somewhat less general class of perturbations consisting
of expressions (16) satisfying:

sup PN TANRD) '2 -
dat<B
[x,x+1]cl S x 5,0 19)
forb=0,"""yn-1,1=5b""",n-1.

Perturbations of a Class of Ordinary Differential Expressions

Definition 3.3

Let M be a differential expression of the form (16).
Take ¥ (/) = min {y(/ + 1), y (/)}. We call M an
admissible perturbation of the form (1) witha. > p,, if

5,()= {

or respectively for b =0, -,

/zv(l) lf__,
B+h) forl 0,

,s-lex1stsw1thp <I<p
+1

Fr (20)

n-1,1=b,""",n-1.

dt<B

sup xt+l I(t‘/’r,) =) |2 an

[x,x+1]cl /S x t 75,0

The following proposition of Schultze [S] will be used
to prove the main result.

Proposition 3.4

If M, is a special expression, then there are
constants b>0(1=0,""",n), K> 0,and n € I such
that for all f € C§(n,»), we have

: |
IMoE2E S 8010 GBI @2

The theorem below that is due to Kauffman is the basic
perturbation theorem that we will apply.

Theorem 3.5

Let M, be given as in (1) and R(T (M)) closed.
Let M be another expression of the form (16) with
order M < order M, satisfying the following
condition:

Thereisag € C([1,]),g9 >0, andllm g(t) = oo such
that gMf € L([1,:0]) for all f D(T M,)). Then
the operator, defined as the restriction of M on
D(T,(M,)), is relatively compact with respect to
T ,M,), and we have
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2(T,M, + M)) = D (T,(M,)),
nul (M*+ N*) = nul M*

R(T,(M,+M))is closed. 22)

With the following lemma we can show that
2 (T,(M, + M)) =D (T,(M,))
Lemma 3.6

Let M be a special expression and M a
corresponding expression, i.e., of the form (16)
satisfying (17) and (18). Then there exist ne I, 0 <
a <1, B2 0 such that for all f € C* (7, ), we have

IMSfHl, <o f[Mg £, +BlISI, (23)

MAIN RESULTS

The crucial lemma that will show the main result is
the following:

Lemma 4.1

There exists 0 <g € C([1,0]) with lim g(t) = o, and
constants ne I, 0 <a <1, f2 0 such that for f €
Cr(n,©)andl =0, ", n— 1 we have

I rg FON, <ol Mg fll,+ BILf 1,

Theorems 4.2 and 4.3 give the invariance of the
essential spectrum and the nullities under the relatively
compact perturbation we have obtained.

Theorem 4.2

Let M, be a special expression and M a
corresponding perturbation, i.e., an expression of
the form (16) satisfying (17) and (18). Then

ae(MO + M) = O-e(MO) = o-e (NIO,O)’

30

where

fora,<p,

g,
a,z’ |Rez=0},
{2 g

oM ]
1_; - -
{ U§= a0 1L (z-3-/)|Rez=0}, fora, =p,

o,o) =

In addition, if M satisfies (19), then for every A €
C \o,(M,),

nul M+ M - 2) =nul (M, - A)

s-1 o+l
= nul (My,— A) +i=21 #{z|c;aaoz%= 0, Re z<0}

where

o=0

9

o/
#el 2 a, M (z-%-j) =A,Rez<0},
B fora=p,

9
#{z| Y, a_z’ =\, Rez<0}, fora<p,
nul (M, - 1) =

Outline of the Proof

From Lemma 4.1 and Theorem 3.5 we obtain, for
closed R (T, (M, - A)) we have R (T (M,+ M - A))
is closed and nul (M, - A)") = nul (M, + M - A)").

Andif R(T,(M,+ M- 1)) is closed, it follows in
the same way that R (T, (M, - 1)) is closed. Hence
we have proven the first assertion, that is

o, (M, +M)=0,(M,).

However for the invariance of the nullities, what we
have shown is that

nul (M- A)* = nul (M, + M - A)",

then to complete the proof of the theorem we must
show that M* is a relatively compact perturbation of
a certain special expression.

This can be done by giving appropriate definitions for
M," and M,* such that M _* is a special expression
with the same polygonal path (same y (/) as M,).



Theorem 4.3

Let M, be of the form (1) satisfying (9), (3) and (6),
let M, ; be given by (8) and let M be given by (16)
satisfying (17) with (20). Then if 0 € C lo, (M

O,S)’
o, (Mp+M) =0
and if M satisfies even (21), we have for all A €C,

nul (M, + M -A) = nul (M

O,S)'

Proof

Thoerem 4.2 applied on M, and =7 (M - }) give for
A &EC

o,M, =0, M, +t 7 (M- LA))

If0 e Clo, (M, () and since /contains one of its end-
points, then there exists X > 0 such that for all f € 2
(T,(M,+ M)) we have

M+ M- fll,2K]f |,
Therefore, L. € C |\ o, (M_ + M).

And if M satisfies (21), it follows from Theorem 4.2
that

nul (M, o) = nul M+ (M=A)=nul(M,+M-A).

The perturbation given by Definition 3.2 was also
applied on self-adjoint differential expression on I =
[a, ), @ € 1R where the coefficient of the highest
derivative has no zeros on I This class of expressions
resulted to a spectrum that is maximal. By this we
mean that the essential spectrum is the whole set of
real numbers. '

The following theorems give our results.
Theorem 4.4

Let

M= 5 ath4f® + 5 b0 @4
u=0 =0

Perturbations of a Class of Ordinary Differential Expressions

with #<1,0 < o;aa;r&O,aLl eC w=0,",0,b ¢
C'(L,C)HY(U=0, ", m— 1) such that

2
dt < B

x+1 |50

5,0

sup
[x,x+1lcl Jx

where 0 < s, is an auxilliary function s, € C* (1)
satisfying s, () =o (t**) and 5, () =0 (t /*1#) for I =
0,, cand withy< B:5,()=0(t""")and s, ()= O
"N forl=o+1,, m.

Then

{ EG: auz”l Re z=0}, Jfor B<1
O'e(M)D{ H=0

(3 o/l h-piRes=0}, forp=1
=0 "j=0
@s)

~ Outline of the Proof

Define

[+
Nof = Zoa” tB#fW
=

g n
N, f= #g:oaﬂtﬁ-/’f(#)+ £ 2B+0 £ )

+1ifm—ci
where n: = {m 1 {fm o iseven
m+2ifm— o isodd

Then N, and N, are special expressions of the form
(1) with essential part N, and N, having only one kink
index o, we have

TSAYIE: zlzof,c,ﬂ(” JOIE0 Jier Oy ki
= =0+t
(26)
where

for0</<o

y(l):={2n_§__:{(l‘a)%(ﬂ+y)+(n—0ﬂo-} foroc<i<n.
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With
N, fi=t3 0+ £

we obtain the following estimate:
, 3a, , 3a 2
IMNg-Mf U2 <A+ NS+ A1 @D

Let

M1f=IZO b, @& SO

IM /113 <o, IN/-Al5 + o, K1/ 13 (28)

we see that there exists G, > 0 and 7 € I'such that for
all fe C,* (n,00)

1N, =21 122G, 17112

But this implies that A ¢ o, (N,) and from Theorem
4.2 follows that A is not contained in the right hand
side of (25). Since this holds for arbitrary A, we have

shown the assertion.

Theorems 4.5 and 4.6 are consequences of Theorem
44.

Theorem 4.5

Let

k
M, f:= ZO a,, (¢ 2P FAL)
#:

i S @, {(e PCHD £y WD g (s 1 plu DYy
1+
#=0

withp<1l,a,€ IR(I=0," ", 2k+ 1),a,, #0and
let

Nf=2 r (070

be self adjoint with r,e C' (1Q) such that

r(n|?
5,0

sup x+1

[x,x+1]cI Jx

dt < o
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.Where 0 <'s, is an auxilliary function s, € C(I)
satisfying for some y < f3:

5, O=0@"? andsl O =o(t (’“)'ﬂ)forl= 0, 2k+1
S, (t) = O(tI'Y)andsl(t) = O(t(l+1).-y)f0r1=2k+ 2’ o m.

Then

o, (M,+N)=1R.

Proof

Since (M + N) is self adjoint, then o,(M,+N)c1R.
By Theorem 4.4, this essential spectrum contains the
range of an odd-order polynomial which is all of 1R.

Theorem 4.6

Let

M~

M, f=

p (-D# a,, (2 Fye 4

0

li

5”‘5(—1)/‘*’ a, ,, (P CHDF WY WD) g (B 1) )y
#=0

with B <1,a, € IR(I=0,,2k), a,> 0 and let

Nf= i r@ Y
I1=0

be self adjoint with r, € C' (IQ€) and

2

x+1 dt < o

r (0

sup 7
5,(0

[x,x+1]cl Jx

where 0 < s, is an auxilliary function s, € C°(D)
satisfying with some y < f3:

s;0=0("Yands, =0 "D Py fori=0,, 2k
5,()=0@" ands, () =0 * D) for1=2k+ 2, m.

Also let

for <1

=0

A= 2k z-1]
min {2 a,x~25) g @+ &) | xe1ry, for =i,
=0

24
{min {Z o x* Ix e iR},
7



Then

0, (My+N)D[A, ).

Proof

For § <1, differentiating M will give terms involving
derivatives of the coefficients falling under the o-terms.
The first case of Theorem 4.4 proves the assertion
with o= 2k, z=ix, and x € 1R.

For = 1, the derivatives of the coefficients have to

be taken into account. The following observation is
helpful. If

2k
Mf= 2 G t*f%W then
u=0 #

1 2k _ w1 o )
M *7|_= ¥ a, [T(x-5 - /)
p0 " j=0

Therefore the polynomial on the right side of (25) is

o k pu—1 k-1 H-l

ix - = _ ..t
Mg * " 2|, =T ay, [T (#+G+5)) + 1 a,,,, I1
#=0 ji=0 j=0 j=0

which is the polynomial that appears in A for =1
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