Perturbations of a Class of Ordinary Differential Expressions Preserving the Essential Spectrum and the Nullities

Marie Redina L. Mumpar-Victoria

Department of Mathematics, College of Science
University of the Philippines Diliman, Quezon City, 1101 Philippines
E-mail: eden@math01.cs.upd.edu.ph

ABSTRACT

Perturbation is used to enlargen a class of differential expressions for which the essential spectrum and the nullities can be classified. One such perturbation in the \mathcal{L}_2 - Hilbert space for the differential expressions $\mathbf{M}_0 f$ takes the form

$$\mathbf{M}f = \sum_{l=0}^{n-1} r_l(t) f^{(l)}$$

where there exists a B such that the coefficients r, satisfy:

$$\sup_{[x,x+1]\subset I} \int_x^{x+1} \left| \frac{r_I(t)}{s_I(t)} \right|^2 dt < B$$

INTRODUCTION

This section gives the basic definitions and notations used in this paper.

Denote by $A_n(I)$, for each positive integer n, the set of complex-valued functions f on I for which $f^{(n-1)} = D^{(n-1)} f$ exists and is absolutely continuous on every compact interval of I. Let $A_0(I) = C(I)$.

Definition 1.1

Let M be a differential expression of the form

$$\mathbf{M} = \sum_{k=0}^{n} a_k D^{(k)}$$

where each a_k is a complex-valued function on I.

The maximal operator $T_1(M)$ generated by M in $L_2(I)$ is defined as

$$\mathcal{D}_{\mathbf{l}} = \{ f \mid f \in A_{n}(I) \cap \mathcal{L}_{2}(I), \mathbf{M} f \in \mathcal{L}_{2}(I) \}$$

$$T_1(M)f = M f = \sum_{k=0}^{n} a_k D^{(k)} f$$

The operator $T_R(M)$ in $L_2(I)$ is defined to be the restriction of $T_1(M)$ to those $f \in \mathcal{D}_1$ which have compact support in the interior of I.

Definition 1.2

The minimal operator generated by M in L_2 (I) denoted by $T_0(M)$, is defined to be the minimal closed extension of $T_R(M)$ in L_2 (I).

Science Diliman (January-June 1999) 11:1, 25 - 33

Definition 1.3

The essential spectrum of M relative to $\mathcal{L}_{\gamma}(I)$ denoted by $\sigma_{\alpha}(\mathbf{M})$ is defined as

$$\sigma_{\nu}(\mathbf{M}) = \{\lambda \in \mathbf{C} \mid \mathcal{R}(\mathbf{T}_0(\mathbf{M} - \lambda)) \text{ is not closed}\}$$

Definition 1.4

The essential resolvent of M, denoted by $\rho_{\bullet}(M)$, is the set of scalars not in σ_a (M), that is

$$\rho_{\alpha}(\mathbf{M}) = \{\lambda \mid \lambda \in \mathbb{C} \setminus \sigma_{\alpha}(\mathbf{M})\}$$

Definition 1.5

Since $\mathcal{R}(T_{\bullet}(M))$ is closed if and only if $\mathcal{R}(T_{\bullet}(M))$ is closed, then

$$\sigma_{c}(\mathbf{M}) = \{\lambda \in \mathbb{C} \mid \mathcal{R}(\mathbf{T}_{1}(\mathbf{M} - \lambda)) \text{ is not closed}\}$$

Definition 1.6

Let M be a differential expression defined on I. The nullity of M, denoted by nul (M), is defined as

$$\operatorname{nul}(M) := \dim(\mathcal{N}(T_1(M))$$

SPECIAL EXPRESSIONS

Consider the differential expression of the form

$$\mathbf{M}_{0}f := \sum_{\sigma=0}^{r} a_{\sigma} t^{\alpha_{\sigma}} f^{(\rho\sigma)} \tag{1}$$

$$\alpha_0 = 0, \alpha_1 \le \rho_1 \tag{2}$$

and

$$1 \ge \frac{\alpha_{\sigma} - \alpha_{\sigma-1}}{\rho_{\sigma} - \rho_{\sigma-1}} \ge \frac{\alpha_{\sigma+1} - \alpha_{\sigma}}{\rho_{\sigma+1} - \rho_{\sigma}}$$

for
$$1, \dots, r - 1$$
 if $r > 1$

Denote by $\sigma_1 < \sigma_2 < \cdots < \sigma_{s-1}$ those indices σ ($\sigma = 1, \dots, r-1$) for which the strict inequality holds in (3)

Then together with $\sigma_0 := 0$ and $\sigma_s := r$, we have

$$\frac{\alpha_{\sigma j} - \alpha_{\sigma j-1}}{\rho_{\sigma j} - \rho_{\sigma j-1}} = \frac{\alpha_{\sigma} - \alpha_{\sigma-1}}{\rho_{\sigma} - \rho_{\sigma-1}} \tag{4}$$

for $\sigma_{i-1} < \sigma < \sigma_i$ $(j = 1, \dots, s)$ if $s \ge 1$ and

$$\frac{\alpha_{\sigma j} - \alpha_{\sigma j-1}}{\rho_{\sigma j} - \rho_{\sigma j-1}} > \frac{\alpha_{\sigma j+1} - \alpha_{\sigma j}}{\rho_{\sigma j+1} - \rho_{\sigma j}}$$
 (5)

for
$$j = 1, \dots, s - 1$$
, if $s > 2$

We assume the constants $a_{\sigma} \in \mathbb{C} \setminus \{0\}$ to satisfy the following conditions:

$$a \in \mathbb{R} \setminus \{0\}$$
 for $\sigma = \sigma_1, \dots, r$ and

for each $k = \rho_{\sigma_1}$, ..., n we have

$$c_{k} := \sum_{\substack{\rho_{\kappa} + \rho_{\lambda} = 2k \\ \sigma_{i} \leq k, \ \lambda \leq \sigma_{i+1}}} (-1)^{\rho_{\kappa} + k} a_{k} a_{\lambda} \geq 0$$

$$(6)$$

$$(\rho_{\sigma_i} \le k \le \rho_{\sigma_{i+1}}, i=1, \cdots, s-1)$$

The $a_{\sigma}(\sigma = 0, \dots, \sigma_{i} - 1)$ may be arbitrary complex constants.

A condition sufficient for (6) to hold is the following simpler condition:

with
$$r \in IN$$
, ρ_0 , ..., $\rho_r \in IN_0$, and $\alpha_\sigma \in IR$ ($\sigma = 0$, ..., $sgn((-1)^{\rho^{-\sigma/2}}a_\sigma) = constant$ for all $\sigma \ge \sigma_1$ such that ρ_σ is even

$$\operatorname{sgn} ((-1)^{(\rho_{\sigma+1})/2} a_{\sigma}) = \text{constant for all } \sigma \ge \sigma_{1}$$

$$\operatorname{such that } \rho_{\sigma} \text{ is odd}$$
(7)

Definition 2.1

(3) Differential equations of the form (1), satisfying (2), (3), and (6) is called a special expression of order n defined on $[1, \infty)$

The expression given by

$$\mathbf{M}_{\mathbf{0},\mathbf{0}}f = \sum_{\sigma=0}^{\sigma_{\mathbf{i}}} a_{\sigma} t^{\alpha_{\sigma}} f^{(\rho_{\sigma})}$$

is called the *essential part* of the special expression $\mathbf{M}_{\mathbf{O}}$.

If we plot the points $(\rho_{\sigma}, \alpha_{\sigma}) \in 1\mathbb{R}^2 (\sigma = 0, \dots, r)$ in the cartesian plane $1\mathbb{R}^2$, and connect $(\rho_{\sigma}, \alpha_{\sigma})$ and $(\rho_{\sigma+1}, \alpha_{\sigma+1}) (\sigma = 0, \dots, r-1)$ by a line segment, then we will obtain a polygonal path with kink (corner) points $(\rho_{\sigma_i}, \alpha_{\sigma_i}) (i = 0, \dots, s-1)$. We will call the σ_i 's the kink indices, and the polygonal path constructed, the polygonal path generated by \mathbf{M}_0 .

The polygonal path generated by $\mathbf{M}_{0,0}$ lies on or below the bisectrix while the polygonal path generated by $\mathbf{M}_{0} - \mathbf{M}_{0,0}$ lies below the bisectrix.

Definition 2.2

Define the function $\gamma: [0, n] \to 1R$ by

$$\gamma(l) := \frac{2}{\rho_{\sigma_{i+1}} - \rho_{\sigma_i}} \left\{ (l - \rho_{\sigma_i}) \alpha_{\sigma_{i+1}} + (\rho_{\sigma_{i+1}} - l) \alpha_{\sigma_i} \right\}$$

where
$$\rho_{\sigma_i} \leq l \leq \rho_{\sigma_{i+1}}$$
.

Then the graph of γ is precisely the polygonal path generated by \mathbf{M}_0 .

For the case $\alpha_1 > \rho_1$, if we consider expressions of the form (1) where the polygonal path lies above the bisector, things become different. We have a situation where \mathbf{M}_0 does not satisfy (2) and thus is no longer a special expression in the same sense. We could however associate a special expression with it.

Definition 2.3

Expression M_0 as in (1) satisfying (3) and (6) that are no longer special expressions, can be associated with a special expression defined to be

$$\mathbf{M}_{\mathbf{O}, S} f = t^{-\beta} \mathbf{M}_{\mathbf{O}} f = t^{\rho_{\tau} - \alpha_{\tau}} \mathbf{M}_{\mathbf{O}} f, \tag{8}$$

where

$$\beta = \max \{ \alpha_i - \rho_i | i = 0, \dots, r \} > 0,$$

$$T = \max \{ i | \alpha_i - \rho_i = \beta, \alpha_i \neq 0 \},$$
(9)

and

$$\tau = \max \{i \mid i \in T\}. \tag{10}$$

PERTURBATIONS OF SPECIAL EXPRESSIONS

The perturbation given in this paper was derived from a lemma in Goldberg [2] specialized in the \mathcal{L}_2 -Hilbert space setting.

Lemma 3.1

Given the interval $I = [1, \infty)$ and $\epsilon > 0$, there exists a \tilde{K} , depending only on ϵ , such that for all r_i locally in $L_2(I)$ and for all f in the domain of the maximal operator $D^{(l+1)}(D = \frac{d}{dl}, l \in IN_0)$

$$||r_{l}f^{(l)}||_{2,I}^{2} \leq (\in ||f^{(l+1)}||_{2,I}^{2} + \tilde{K} ||f^{(l)}||_{2,I}^{2}) \sup_{[x, x+1] \subset I} \int_{x}^{x+1} |r_{l}(t)|^{2} dt$$
(11)

Proof

Take a compact sub-interval $I_0 = [1, \beta]$ on I.

Let I_1 and I_2 be non-overlapping sub-intervals of I_0 such that $I_1 \cup I_2 = I_0$ with I_1 "to the left" of I_2 .

For $\eta > 0$ such that for all $t \in I_1$: $t + \eta \in I_0$ and for all $t \in I_2$: $t - \eta \in I_0$, choose $\varphi \in C^{l+1}([0, \eta])$ so that $0 \le \varphi(t) \le 1$ on $[0, \eta]$, $\varphi(0) = 1$ and $\varphi(\eta) = 0$.

For $f^{(i)} \in \text{dom } D$ and $t \in I_i$, we see that

$$f^{(l)}(t) = -\int_0^{\eta} \frac{d}{dx} (\varphi(x) f^{(l)}(t+x)) dx$$

= $-\int_0^{\eta} \varphi(x) f^{(l+1)}(t+x) dx - \int_0^{\eta} \varphi'(x) f^{(l)}(t+x) dx.$

Letting $M = \max_{0 \le x \le \eta} |\varphi'(x)|$, we obtain

$$|f^{(l)}(t)| \le \int_0^{\eta} |f^{(l+1)}(t+x)| dx + M \int_0^{\eta} |f^{(l)}(t+x)| dx$$

$$\leq \eta^{1/2} \left[\left(\int_0^{\eta} |f^{(l+1)}(t+x)|^2 dx \right)^{1/2} + M \left(\int_0^{\eta} f^{(l)}(t+x)|^2 dx \right)^{1/2} \right]$$

It follows from the Schwarz's inequality in 1R2 that

$$|f^{(l)}(t)| \leq \eta \frac{1}{2} \left[(1,1) \left(\frac{\left(\int_{0}^{\eta} |f^{(l+1)}(t+x)|^{2} dx \right)^{\gamma_{2}}}{\left(M^{2} \int_{0}^{\eta} |f^{(l)}(t+x)|^{2} dx \right)^{\gamma_{2}}} \right) \right]$$

$$\leq \eta^{1/2} (2)^{1/2} \left[\left(\int_0^\eta \left| f^{(l+1)}(t+x) \right|^2 dx \right) + (M^2 \int_0^\eta \left| f^{(l)}(t+x) \right|^2 dx \right) \right]^{1/2}$$

$$\leq 2\eta^{\frac{1}{2}} \left[\left(\int_0^{\eta} |f^{(l+1)}(t+x)|^2 dx \right) + M^2 \left(\int_0^{\eta} |f^{(l)}(t+x)|^2 dx \right) \right]^{\frac{1}{2}}$$
(12)

Taking η sufficiently small, it follows that there exists a K_i depending only on \in such that $t \in I_i$,

$$|f^{(l)}(t)| \leq \frac{\epsilon}{2} \int_0^\eta |f^{(l+1)}(t+x)|^2 dx + K_1 \int_0^\eta |f^{(l)}(t+x)|^2 dx$$

$$\leq \frac{\epsilon}{2} \int_{t}^{t+\eta} |f^{(l+1)}(x)|^{2} dx + K_{1} \int_{t}^{t+\eta} |f^{(l)}(x)|^{2} dx. \quad (13)$$

From the conditions put on η we see that as β approaches infinity, η can be kept fixed so that (12) still holds.

Thus K_1 can be chosen to be a non-increasing function of the length of I_0 .

Letting a be the left endpoint of I_1 , (13) implies that

$$\int_{I_1} |r_i(t)f^{(l)}(t)|^2 dt \le \int_{I_1} \int_t^{t+\eta} |r_i(t)|^2 \left(\frac{\epsilon}{2} |f^{(l+1)}(x)|^2 dx + K_1 |f^{(l)}(x)|^2\right) dx dt$$

$$= \int_{I_1} \int_{I} |r_I(t)|^2 \Upsilon_{[I_1,t+\eta]}(x) \left(\frac{\epsilon}{2} |f^{(l+1)}(x)|^2 + K_1 \int |f^{(l)}(x)|^2 \right) dx dt$$

where
$$\Upsilon_{[t,t+\eta]}(x) = \begin{cases} 0 \text{ if } t > x \text{ or } t + \eta \le x \\ 1 \text{ if } t \le x < t + \eta \end{cases}$$

By Fubini's theorem, we have

$$\int_{I} |r_{I}(t)f^{(l)}(t)|^{2} dt$$

$$\leq \int_{I} \left(\frac{\epsilon}{2} |f^{(l+1)}(x)|^{2} dx + K_{1} |f^{(l)}(x)|^{2}\right) \int_{I_{1}} |r_{i}(t)|^{2} \Upsilon_{[t, t+\eta]}(x) \, dt dx$$

$$= \int_{I} \left(\frac{\epsilon}{2} |f^{(l+1)}(x)|^{2} + K_{1} \int |f^{(l)}(x)|^{2} \right) \int_{\max(x-\eta,a)}^{x} |r_{l}(t)|^{2} dt dx$$

$$\leq \int_{I} \left(\frac{\epsilon}{2} |f^{(l+1)}(x)|^{2} + K_{1} \int |f^{(l)}(x)|^{2} \right) \int_{x}^{x+1} |r(\tau - \eta)|^{2} d\tau dx$$

$$= \int_{I} \left(\frac{\epsilon}{2} |f^{(l+1)}(x)|^{2} + K_{1} \int |f^{(l)}(x)|^{2} \right) \sup_{[x, x+1] \subset I \int_{x}^{x+1} |r_{l}(t)|^{2} dt dx$$

$$= \frac{\epsilon}{2} \int_{I} \left(|f^{(l+1)}(x)|^{2} + K_{1} \int |f^{(l)}(x)|^{2} \right) dx \sup_{\{x, x+1\} \subset I} \int_{x}^{x+1} |r_{l}(t)|^{2} dt$$

$$= \left(\frac{\epsilon}{2} \|f^{(l+1)}\|_{2, I}^{2} + K_{I} \|f^{(l)}(x)\|_{2, I}^{2}\right) dx \sup_{[x, x+1] \subset I} \int_{x}^{x+1} |r_{I}(t)| dt.$$
(14)

For $t \in I_2$, we have

$$|f^{(l)}(t)| = -\int_0^{\eta} \frac{d}{dx} \left(\varphi(x) f^{(l)}(t-x) \right) dx.$$

Thus, by the argument established in (13), for $t \in I_2$, we get

$$|f^{(l)}(t)| \le \frac{\epsilon}{2} \int_{t-\eta}^{t} |f^{(l+1)}(x)|^2 dx + K_1 \int_{t-\eta}^{t} |f^{(l)}(x)|^2 dx.$$

As in (13), we obtain

$$\int_{I_{2}} |r_{I}(t)f^{(I)}(t)|^{2} dt$$

$$\leq \int_{I} \left(\frac{\epsilon}{2} |f^{(I+1)}(x)|^{2} + K_{I} |f^{(I)}(x)|^{2} \right) dx \int_{x}^{x+\eta} |r_{I}(t)|^{2} dt$$

$$\leq \left(\frac{\epsilon}{2} ||f^{(I+1)}||_{2,I}^{2} + K_{I} ||f^{(I)}(x)||_{2,I}^{2} \right) \sup_{[x, x+1] \subset I} \int_{x}^{x+1} r_{I}(t) dt.$$
(15)

The lemma thus follows from (14) and (15).

Let us now define a relatively compact perturbation of special expressions.

Definition 3.2

Let M be a differential expression of the form

$$\mathbf{M}f = \sum_{l=0}^{n-1} r_l(t)f^{(l)}$$
 (16)

We say that \mathbf{M} is an admissible perturbation of the differential expression \mathbf{M}_0 if there exists a \mathbf{B} such that the coefficients r_i satisfy the following:

$$\sup_{[x, x+1]\subset I} \int_{x}^{x+1} \left| \frac{r_{l}(t)}{s_{l}(t)} \right|^{2} dt < \mathbf{B}$$
 (17)

where $r_i \in \mathbb{C}^l(I)$ for $l = 0, \dots, n-1$ and $0 < s_i$ is an auxilliary function $s_i \in \mathbb{C}^{\infty}(I)$ satisfying

$$s_{l}(t) = o(t^{\frac{1}{2}\gamma(l+1)}) \text{ and } s_{l}(t) = o(t^{\frac{1}{2}\gamma(l)})$$
 (18)

For the invariance of nullities, we can only admit a somewhat less general class of perturbations consisting of expressions (16) satisfying:

$$\sup_{[x,x+1]\subset I} \int_{x}^{x+1} \left| \frac{r_{I}^{(l-b)}(t)}{s_{b}(t)} \right|^{2} dt < \tilde{B}$$
(19)

for
$$b = 0, \dots, n-l$$
, $l = b, \dots, n-l$.

Definition 3.3

Let **M** be a differential expression of the form (16). Take $\tilde{\gamma}(l) = \min \{ \gamma(l+1), \gamma(l) \}$. We call **M** an admissible perturbation of the form (1) with $\alpha_1 > \rho_1$, if

$$\leq \left(\frac{\epsilon}{2} \| f^{(l+1)} \|_{2,l}^{2} + K_{l} \| f^{(l)}(x) \|_{2,l}^{2}\right) \sup_{[x, x+1] \subset I} \int_{x}^{x+1} r_{l}(t) dt. \qquad s_{l}(t) = \begin{cases} o\left(t^{\frac{1}{12}\widetilde{\gamma}(l)}\right), & \text{if } = \frac{\tau}{\sigma_{l}}, \cdots, s-1 \text{ exists with } \rho_{\sigma_{l}} \leq l \leq \rho_{\sigma_{l+1}} \\ o\left(t^{(l+1)}\right), & \text{for } l = 0, \cdots, \rho_{\tau} \end{cases}$$
(20)

or respectively for $b = 0, \dots, n-1, l = b, \dots, n-1$.

$$\sup_{[x,x+1]\subset I} \int_{x}^{x+1} \left| \frac{(t^{-\beta}r_{i})^{(l-b)}(t)}{t^{-\beta}s_{i}(t)} \right|^{2} dt < \tilde{B}$$
 (21)

The following proposition of Schultze [5] will be used to prove the main result.

Proposition 3.4

If M_0 is a special expression, then there are constants $b_i > 0$ $(l = 0, \dots, n), K \ge 0$, and $\eta \in I$ such that for all $f \in C_0^{\infty}(\eta, \infty)$, we have

$$\|\mathbf{M}_{0}f\|_{2}^{2} \geq \sum_{l=0}^{n} \int_{I} b_{l} \mathsf{t}^{\gamma(l)} |f^{(l)}|^{2} + (b_{0} - K) \|f\|_{2}^{2}$$
 (22)

The theorem below that is due to Kauffman is the basic perturbation theorem that we will apply.

Theorem 3.5

Let $\mathbf{M_o}$ be given as in (1) and $\mathcal{R}(\mathbf{T_o}(\mathbf{M}))$ closed. Let \mathbf{M} be another expression of the form (16) with order \mathbf{M} < order $\mathbf{M_o}$ satisfying the following condition:

There is a $g \in C([1,\infty])$, g > 0, and $\lim_{t \to \infty} g(t) = \infty$ such that $g\mathbf{M}f \in \mathcal{L}_2([1,\infty])$ for all $f \in \mathcal{D}(\mathbf{T}_0(\mathbf{M}_0))$. Then the operator, defined as the restriction of \mathbf{M} on $\mathcal{D}(\mathbf{T}_0(\mathbf{M}_0))$, is relatively compact with respect to $\mathbf{T}_0(\mathbf{M}_0)$, and we have

$$\mathcal{D}\left(\mathbf{T}_{\mathbf{o}}(\mathbf{M}_{\mathbf{o}} + \mathbf{M})\right) = \mathcal{D}\left(\mathbf{T}_{\mathbf{o}}(\mathbf{M}_{\mathbf{o}})\right),$$

$$\operatorname{nul}\left(\mathbf{M}^{+} + \mathbf{N}^{+}\right) = \operatorname{nul}\mathbf{M}^{+}$$

$$\mathcal{R}(\mathbf{T}_{\mathbf{o}}(\mathbf{M}_{\mathbf{o}} + \mathbf{M})) \text{ is closed.}$$
(22)

With the following lemma we can show that

$$\mathcal{D}\left(\mathbf{T}_{\mathbf{0}}(\mathbf{M}_{\mathbf{0}}+\mathbf{M})\right)=\mathcal{D}\left(\mathbf{T}_{\mathbf{0}}(\mathbf{M}_{\mathbf{0}})\right)$$

Lemma 3.6

Let \mathbf{M}_0 be a special expression and \mathbf{M} a corresponding expression, i.e., of the form (16) satisfying (17) and (18). Then there exist $\eta \in I$, $0 < \alpha < 1$, $\beta \ge 0$ such that for all $f \in C_a^{\infty}$ (η, ∞) , we have

$$\|\mathbf{M}f\|_{2} \le \alpha \|\mathbf{M}_{\mathbf{O}}f\|_{2} + \beta \|f\|_{2}$$
 (23)

MAIN RESULTS

The crucial lemma that will show the main result is the following:

Lemma 4.1

There exists $0 < g \in C([1,\infty])$ with $\lim_{t\to\infty} g(t) = \infty$, and constants $\eta \in I$, $0 < \alpha < 1$, $\beta \ge 0$ such that for $f \in C_0^{\infty}(\eta,\infty)$ and $l = 0, \dots, n-1$ we have

$$||r_1gf^{(l)}||_2 \le \alpha ||M_0f||_2 + \beta ||f||_2$$

Theorems 4.2 and 4.3 give the invariance of the essential spectrum and the nullities under the relatively compact perturbation we have obtained.

Theorem 4.2

Let \mathbf{M}_0 be a special expression and \mathbf{M} a corresponding perturbation, i.e., an expression of the form (16) satisfying (17) and (18). Then

$$\sigma_{e}(\mathbf{M}_{O} + \mathbf{M}) = \sigma_{e}(\mathbf{M}_{O}) = \sigma_{e}(\mathbf{M}_{OO}),$$

where

$$\sigma_{e}(\mathbf{M}_{0,0}) = \begin{cases} \begin{cases} \sum_{\sigma=0}^{\sigma_{1}} a_{\sigma} z^{\rho_{\sigma}} \mid \text{Re } z = 0 \end{cases}, & \text{for } \alpha_{1} < \rho_{1} \\ \sigma_{1} & \sigma_{1} \end{cases} \\ \begin{cases} \sum_{\sigma=0}^{\sigma_{\sigma}} a_{\sigma} \prod_{j=0}^{\sigma-J} (z - \frac{1}{2} - j) \mid \text{Re } z = 0 \end{cases}, & \text{for } \alpha_{1} = \rho_{1} \end{cases}$$

In addition, if M satisfies (19), then for every $\lambda \in \mathbb{C} \setminus \sigma_{\epsilon}(\mathbf{M}_{0})$,

$$\operatorname{nul}\left(\mathbf{M}_{0} + \mathbf{M} - \lambda\right) = \operatorname{nul}\left(\mathbf{M}_{0} - \lambda\right)$$

= nul
$$(\mathbf{M}_{0,0} - \lambda) + \sum_{i=1}^{s-1} \#\{z | \sum_{\sigma=\sigma_i}^{\sigma_i+1} a_{\sigma} z^{\rho_i} = 0, \text{ Re } z < 0\}$$

where

$$\operatorname{nul}(\mathbf{M}_{0,0} - \lambda) = \begin{cases} \#\{z \mid \sum_{\sigma=0}^{\sigma_1} a_{\sigma} z^{\rho_{\sigma}} = \lambda, \operatorname{Re} z < 0\}, & \operatorname{for} \alpha_1 < \rho_1 \\ \#\{z \mid \sum_{\sigma=0}^{\sigma_1} a_{\sigma} \prod_{j=0}^{\sigma-1} (z - \frac{1}{2} - j) = \lambda, \operatorname{Re} z < 0\}, \\ & \operatorname{for} \alpha_1 = \rho_1 \end{cases}$$

Outline of the Proof

From Lemma 4.1 and Theorem 3.5 we obtain, for closed $\mathcal{R}(\mathbf{T}_{\mathbf{0}}(\mathbf{M}_{\mathbf{0}} - \lambda))$ we have $\mathcal{R}(\mathbf{T}_{\mathbf{0}}(\mathbf{M}_{\mathbf{0}} + \mathbf{M} - \lambda))$ is closed and nul $((\mathbf{M}_{\mathbf{0}} - \lambda)^+) = \text{nul } ((\mathbf{M}_{\mathbf{0}} + \mathbf{M} - \lambda)^+)$.

And if $\mathcal{R}(\mathbf{T_o}(\mathbf{M_o} + \mathbf{M} - \lambda))$ is closed, it follows in the same way that $\mathcal{R}(\mathbf{T_o}(\mathbf{M_o} - \lambda))$ is closed. Hence we have proven the first assertion, that is

$$\sigma_e(\mathbf{M}_0 + \mathbf{M}) = \sigma_e(\mathbf{M}_0).$$

However for the invariance of the nullities, what we have shown is that

$$\operatorname{nul} (\mathbf{M}_0 - \lambda)^+ = \operatorname{nul} (\mathbf{M}_0 + \mathbf{M} - \lambda)^+,$$

then to complete the proof of the theorem we must show that M^+ is a relatively compact perturbation of a certain special expression.

This can be done by giving appropriate definitions for $\mathbf{M_o}^+$ and $\widetilde{\mathbf{M}_o}^+$ such that $\widetilde{\mathbf{M}_o}^+$ is a special expression with the same polygonal path (same $\gamma(l)$ as $\mathbf{M_o}$).

Theorem 4.3

Let \mathbf{M}_{0} be of the form (1) satisfying (9), (3) and (6), let $\mathbf{M}_{0,s}$ be given by (8) and let \mathbf{M} be given by (16) satisfying (17) with (20). Then if $0 \in \mathbb{C} \setminus \sigma_{e}(\mathbf{M}_{0,s})$,

$$\sigma_{\mathcal{O}}(\mathbf{M}_{\mathbf{O}} + \mathbf{M}) = \emptyset$$

and if M satisfies even (21), we have for all $\lambda \in \mathbb{C}$,

nul
$$(\mathbf{M}_0 + \mathbf{M} - \lambda) = \text{nul } (\mathbf{M}_{0.5}).$$

Proof

Theorem 4.2 applied on $\mathbf{M}_{o,s}$ and $t^{-\beta}(\mathbf{M} - \lambda)$ give for $\lambda \notin \mathbb{C}$

$$\sigma_{c}(M_{o,s}) = \sigma_{c}(M_{o,s} + t^{-\beta}(M - \lambda))$$

If $0 \in \mathbb{C} \setminus \sigma_{e}(\mathbf{M}_{0,s})$ and since *I* contains one of its endpoints, then there exists K > 0 such that for all $f \in \mathcal{D}(\mathbf{T}_{0}(\mathbf{M}_{0} + \mathbf{M}))$ we have

$$\| (\mathbf{M}_{0} + \mathbf{M} - \lambda) f \|_{2} \ge K \| f \|_{2}$$

Therefore, $\lambda \in \mathbb{C} \setminus \sigma_a (M_a + M)$.

And if M satisfies (21), it follows from Theorem 4.2 that

$$\operatorname{nul}(\mathbf{M}_{o,s}) = \operatorname{nul}(\mathbf{M}_{o,s} + t^{-\beta}(\mathbf{M} - \lambda) = \operatorname{nul}(\mathbf{M}_{o} + \mathbf{M} - \lambda).$$

The perturbation given by Definition 3.2 was also applied on self-adjoint differential expression on $I = [a, \infty)$, $a \in 1R$ where the coefficient of the highest derivative has no zeros on I. This class of expressions resulted to a spectrum that is maximal. By this we mean that the essential spectrum is the whole set of real numbers.

The following theorems give our results.

Theorem 4.4

Let

$$Mf := \sum_{\mu=0}^{\sigma} a_{\mu} t^{\beta \cdot \mu} f^{(\mu)} + \sum_{l=0}^{m} b_{l}(t) f^{(l)}$$
 (24)

with $\beta \le 1.0 < \sigma$, $a_{\sigma} \ne 0$, $a_{\mu} \in \mathbb{C}$ $(\mu = 0, \dots, \sigma)$, $b_{l} \in C^{l}(I, \mathbb{C})$ $(l = 0, \dots, m-1)$ such that

$$\sup_{[x, x+1] \subset I} \int_{x}^{x+1} \left| \frac{b_{j}(t)}{s_{j}(t)} \right|^{2} dt < B$$

where $0 < s_l$ is an auxilliary function $s_l \in C^{\infty}(I)$ satisfying $s_l(t) = o(t^{l.b})$ and $s_l(t) = o(t^{(l+1).\beta})$ for $l = 0, \dots, \sigma$ and with $\gamma < \beta : s_l(t) = O(t^{(l+1).\gamma})$ and $s_l(t) = O(t^{(l+1).\gamma})$ for $l = \sigma + 1, \dots, m$.

Then

$$\sigma_{e}(M) \supset \begin{cases} \left\{ \sum_{\mu=0}^{\sigma} a_{\mu} z^{\mu} \mid \text{Re } z = 0 \right\}, & \text{for } \beta < 1 \\ \left\{ \sum_{\mu=0}^{\sigma} a_{\mu}^{\mu} \prod_{j=0}^{-1} (z - \frac{1}{2} - j) \mid \text{Re } z = 0 \right\}, & \text{for } \beta = 1 \end{cases}$$
(25)

Outline of the Proof

Define

$$\begin{aligned} \mathbf{No} f &:= \sum_{\mu=0}^{\sigma} a_{\mu} t^{\beta \cdot \mu} f^{(\mu)} \\ \mathbf{N_1} f &:= \sum_{\mu=0}^{\sigma} a_{\mu} t^{\beta \cdot \mu} f^{(\mu)} + t^{\frac{n}{2}(\beta+\gamma)} f^{(n)} \end{aligned}$$

where
$$n := \begin{cases} m+1 \text{ if } m-\sigma \text{ is even} \\ m+2 \text{ if } m-\sigma \text{ is odd} \end{cases}$$

Then N_0 and N_1 are special expressions of the form (1) with essential part N_0 and N_1 having only one kink index σ , we have

$$\| (\mathbf{N}_1 - \lambda) f \|_2^2 \ge \sum_{l=0}^{\sigma} \int_I C_l t^{\gamma(l)} |f(l)|^2 + \sum_{l=\sigma+1}^{n} \int_I C_l t^{\gamma(l)} |f(l)|^2 - K \|f\|_2^2$$
(26)

where

$$\gamma(l) := \begin{cases} \frac{2\beta.1}{n-\sigma} \{ (1-\sigma) \frac{n}{2} (\beta+\gamma) + (n-l) \beta\sigma \} & \text{for } 0 \le l \le \sigma. \end{cases}$$

With

$$\mathbf{N}_{2}f := \mathbf{t}^{\frac{n}{2}(\beta+\lambda)}f^{(n)}$$

we obtain the following estimate:

$$\| (\mathbf{N_0} - \lambda) f \|_2^2 \le (1 + \frac{3\alpha}{c}) \| (\mathbf{N_1} - \lambda) f \|_2^2 + \frac{3\alpha}{c} \| f \|_2^2$$
 (27)

Let

$$\mathbf{M}_{1} f = \sum_{l=0}^{m} b_{l}(t) f^{(l)}$$

$$\|\mathbf{M}_{1}f\|_{2}^{2} \leq \alpha_{2} \|\mathbf{N}_{1}f - \lambda\|_{2}^{2} + \alpha_{2}K\|f\|_{2}^{2}$$
 (28)

we see that there exists $G_{\lambda} > 0$ and $\eta \in I$ such that for all $f \in C_0^{\infty}(\eta, \infty)$

$$\|(N_1 - \lambda)f\|_2^2 \ge G_{\lambda} \|f\|_2^2$$

But this implies that $\lambda \notin \sigma_{\epsilon}(N_1)$ and from Theorem 4.2 follows that λ is not contained in the right hand side of (25). Since this holds for arbitrary λ , we have shown the assertion.

Theorems 4.5 and 4.6 are consequences of Theorem 4.4.

Theorem 4.5

Let

$$M_0 f := \sum_{\mu=0}^k a_{2\mu} (t^{2\beta\mu} f^{(\mu)})^{(\mu)} +$$

$$\frac{i}{2} \sum_{\mu=0}^{k} a_{2\mu+1} \{ (t^{\beta(2\mu+1)} f^{(\mu)})^{(\mu+1)} + (t^{\beta(2\mu+1)} f^{(\mu+1)})^{(\mu)} \}$$

with $\beta \le 1$, $a_{l} \in 1R(l = 0, \dots, 2k + 1)$, $a_{2k+1} \ne 0$ and let

$$\mathbf{N}f = \sum_{l=0}^{m} r_l(t) f^{(l)}$$

be self adjoint with $r_l \in \mathbb{C}^l$ (I, \mathbb{C}) such that

$$\sup_{[x,x+1]\subset I} \int_{x}^{x+1} \left| \frac{r_{I}(t)}{s_{I}(t)} \right|^{2} dt < \infty$$

where $0 < s_i$ is an auxilliary function $s_i \in C^{\infty}(I)$ satisfying for some $\gamma < \beta$:

$$s_{l}(t) = o(t^{l+\beta}) \text{ and } s_{l}(t) = o(t^{(l+1)+\beta}) \text{ for } l = 0, \dots, 2k+1$$

 $s_{l}(t) = O(t^{l+\gamma}) \text{ and } s_{l}(t) = O(t^{(l+1)+\gamma}) \text{ for } l = 2k+2, \dots, m.$

Then

$$\sigma_{\alpha}(\mathbf{M}_0 + \mathbf{N}) = 1\mathbf{R}.$$

Proof

Since $(\mathbf{M}_0 + \mathbf{N})$ is self adjoint, then $\sigma_e(\mathbf{M}_0 + \mathbf{N}) \subset \mathbf{1R}$. By Theorem 4.4, this essential spectrum contains the range of an odd-order polynomial which is all of $\mathbf{1R}$.

Theorem 4.6

Let

$$\mathbf{M_0} f := \sum_{\mu=0}^{k} (-1)^{\mu} a_{2\mu} (t^{2\beta\mu} f^{(\mu)})^{(\mu)} +$$

$$\sum_{\mu=0}^{i} \sum_{\mu=0}^{k-1} (-1)^{\mu+i} a_{2\mu+1} \{ (t^{\beta(2\mu+1)} f^{(\mu)})^{(\mu+1)} + (t^{\beta(2\mu+1)} f^{(\mu+1)})^{(\mu)} \}$$

with
$$\beta \leq 1$$
, $a_l \in 1\mathbb{R}$ $(l = 0, \dots, 2k)$, $a_{2k} > 0$ and let

$$\mathbf{N} f = \sum_{l=0}^{m} r_{l}(t) f^{(l)}$$

be self adjoint with $r_i \in C^l$ (I,C) and

$$\sup_{[x,x+1]\subset I} \int_{x}^{x+1} \left| \frac{r_{l}(t)}{s_{l}(t)} \right|^{2} dt < \infty$$

where $0 < s_i$ is an auxilliary function $s_i \in C^{\infty}(I)$ satisfying with some $\gamma < \beta$:

$$s_{l}(t) = o(t^{l \cdot b}) \text{ and } s_{l}(t) = o(t^{(l+1) \cdot \beta}) \text{ for } l = 0, \dots, 2k$$

 $s_{l}(t) = O(t^{l \cdot \gamma}) \text{ and } s_{l}(t) = O(t^{(l+1) \cdot \gamma}) \text{ for } l = 2k + 2, \dots, m.$

Also let

$$\Lambda := \begin{cases} \min \left\{ \sum_{\tau=0}^{2k} \alpha_{\tau} x^{\tau} \, \middle| \, x \in 1R \right\}, & \text{for } \beta < 1 \\ \min \left\{ \sum_{\tau=0}^{2k} \alpha_{\tau} x^{\tau-2\left[\frac{\tau}{2}\right]} \prod_{\xi=0}^{\left[\frac{\tau}{2}-1\right]} \left(x^2 + \left(\frac{2\xi+1}{2}\right)^2 \right) \middle| \, x \in 1R \right\}, & \text{for } \beta = 1. \end{cases}$$

Then

$$\sigma_{\mathcal{O}}(\mathbf{M}_0 + \mathbf{N}) \supset [\Lambda, \infty).$$

Proof

For β < 1, differentiating \mathbf{M}_0 will give terms involving derivatives of the coefficients falling under the o-terms. The first case of Theorem 4.4 proves the assertion with $\sigma = 2k$, z = ix, and $x \in 1R$.

For $\beta = 1$, the derivatives of the coefficients have to be taken into account. The following observation is helpful. If

$$Mf = \sum_{\mu=0}^{2k} \tilde{a}_{\mu} t^{\mu} f^{(\mu)}$$
 then

$$\mathbf{M}t^{ix-\frac{1}{2}}\big|_{t=1} = \sum_{\mu=0}^{2k} \widetilde{a}_{\mu} \prod_{j=0}^{\mu-1} (ix-\frac{1}{2} - j).$$

Therefore the polynomial on the right side of (25) is

$$\mathbf{M_0} t^{ix-\frac{1}{2}}|_{t=1} = \sum_{\mu=0}^{k} a_{2\mu} \prod_{j=0}^{\mu-1} (x^2 + (j + \frac{1}{2})^2) + \prod_{j=0}^{k-1} a_{2\mu+1} \prod_{j=0}^{\mu-1} (x^2 + (j + \frac{1}{2})^2).$$

which is the polynomial that appears in Λ for $\beta = 1$

REFERENCES

Balslev, E. & T. W. Gamelin. 1964. The essential spectrum of a class of ordinary differential operators, *Pacific J. Math.* 14 (3): 755-776.

Goldberg S. 1966. Unbounded Linear Operators. McGraw Hill, New York: 109-168 pp.

Kauffman, R. M. 1977. On the limit-*n* classification of ordinary differential operators with positive coefficients. *Proc. London Math. Soc.* 35 (3): 496-526.

Schultze, B. 1990. Spectral properties of not necessarily self-adjoint linear operators. *Advances in Math.* 83 (1): 75-95.

Schultze, B. 1998. A class of Singular self-adjoint ordinary differential operators with maximal spectrum. Universitaet Gesamthoschule Essen. Germany. Unpublished.