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ABSTRACT

As a continuation and improvement on previous works, we derive a third order MHD equation through a
projection and perturbation formalism that we will apply to various MHD flows. It is shown that the model
can be linked to the theory where structure and geometry of the particle plays a role in explaining turbulence.
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INTRODUCTION

The standard MHD equations can be solved analytically
if applied to some of MHD flows with the theory in
good agreement with experiments as long as the flow
remained laminar. However, any agreement breaks
down whenever the flow becomes turbulent.
Consequently the standard MHD equations cannot be
used for the description of turbulent flows. The reason
may be found in the common assumption of hard-sphere
structureless particles used in their derivation. Elastic
collisions between the particles of the fluid do not affect
the form of standard MHD equations.

Here we derive third order MHD equation containing
two control parameters related to the internal structure
and geometry of the particle. The control parameter
related to the internal structure was previously found
to be inversely proportional to the critical Reynolds
number and thus dependent on energy gap between
ground and excited states of the particles if one adopts
the hypothesis of quantum origin of turbulence . There
are dissipative effects due to the excitations of internal
degrees of freedom of the particle leading to inelastic
collisions. In case no excitations occur the collisions
remain elastic,
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PRELIMINARIES

Following the projection formalism of Zwanzig, Dresden,
and Muriel and the perturbation procedure outlined in
the kinetic equations correct to the appropriate order
k=0,1,2 are derived from the Liouville equation for N-
particle distribution function
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where the Liouville operator L may be written as
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where € is the volume of the system. The
complementary projector is 1-P. Applying both projectors
to the Liouville equation, it may be reduced to an exact
equivalent of the first equation in the BBGKY hierarchy
of equations for the one particle distribution function
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We then take a simple approach. Farmally expand the
Sy

distribution functionf=3 A" £ in orders of | and
a0

the propagator (f = ¢ in Taylor series, and then

substitute into Eq. 2. Then we pick the terms to the

appropriate order k.

THIRD ORDER PERTURBATION THEORY

Zero order (k=0). Zero-order kinctic equation for
the one-particle. (electron r ion) distribution function
1. is the Boltzmann equation with BBGKY-like elastic
collision term in the presence of total electromagnetic
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with # = Fe(l + 1 Jas the Lorentz force acting
mc

on a charged particle, which can be reduced to the
standard MHD equation.

First order (k=1). We obtain MHD equation with one
correction term. 0, < UL >, known as the Reynolds
MHD equation. Corresponding Fourier transformed
form is used in most theories of turbulence, The
turbulence is considered merely as a flow phenomenon
and the particle structure is here untmportant or
unnecessary. The first order theory does not tell us
anything about the transition from the laminar to turbulent
regime.

Second order (k=2). The second order kinetic

equation can be reduced to an MHD equation for mean
. . L .

velocity of the tluid £7using a renormalization due to

McComb.

A

paiﬂ(’w, Fp-p R LB
Ct c

——Jb(! .s)Vpds—wjb(l—a) V2 Uds €}
g

where p is the mean pressure, o is the density, vis the
kinematic viscosity, the parameter » = (mf(VVF 1719}
with Q as the volume and ¥ is the collision interaction
potential. We have $=0 for elastic collistons. This
suggests b=0 is a measure of the strength of inelastic
interactions and is related to the internal structurc of
the molecule. The quantum kinetic model of turbulence
serves as a basis in relating to other internal structure
parameters. The parameter & becomes significant in
the turbulent regime and an application such as the
Hartmann flow is used to iflustrate the etfect of 5.
Numerical simulation has shown intersecting velocity
profiles indicative of non-equilibrium phase transition
from laminar to turbulent flow.

Third order (k=3). To obtain the third order kinetic
equation we pick simply terms containing A' in Eq.2
using the appropriate expansions for one-particle

distribution function and propagator. The third order
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equation may be written as
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multiplied by ene component of momentum and
Integrated over momentum space.

Using explicit forms of the Liouville operators we may
rewrite Iiq. 5 as
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where the new vector parameter ¢ = J (VI dQ
Q)

1s related to the geometry of the particle and is
interpreted as a measure of the asymmetry of the
particle. [t vanishes for perfectly spherical particle.
Multiplying Eq.6 by a component of the momentum and
integrating over momentum space, the third order MHD
equation may be written as

p[{}? (U] + ﬁ’p— vV 2l - /xB =
g c

!
L [Bl(r — YV p + (1 = )2 V20 1ds
My
» ()
—— (=)' [5eV p + BN U 1ds
m-p
using renormalization of the density, pressure and
velocity to their true values due to McComb. Eq.7 is
the MHD equation with proposed correction terms in
integral form correct up to the third order. It contains
the second order equation and there are new correction
terms with a vector parameter &, a measure of the
asymmetry of the particle and scalar b. It is interesting
to observe that the geometry of the particle does not
affect the flow of an incompressible fluid; however there
is a new term with control parameter hocR*
affecting the flow. The refation of the assymetry
parameter ¢, to the critical Reynolds number is not yet
known. Hf coupled with Maxwell equations it may be
reduced after somewhat lengthy but elementary
procedure to a fifth order non-linear differential equation
for Hartmann or Couette flow using a configuration
where 17 = ({/,0,0), B = (0.0, By).
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where s is the conductivity. We expect a solution
containing at most five incommensurable frequencies
describing chaotic behaviour of the system. This is
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improvement over second order for the numeric
solutions as well as in the time validity.
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