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ABSTRACT

We derive exact expressions for the partition function, equation of state, mean internal energy, and heat
capacity at constant volume of a one-dimensional gravitational gas (1DGG) in a uniform external field.

INTRODUCTION

There has been much interest in the study of many-
body system with gravitational interactions. The primary
motivation for these studies has been the desire to
understand the large-scale structure of the universe
{Saslaw, 1985). Another motivation for these studies is
that these systems offer an opportunity to re-study basic
aspects of statistical mechanics and thermodynamics.

Various model systems have been investigated in order
to understand many aspects of the behavior of large-
scale structures using many different approaches.
Examples of model gravitational systems that have been
studied include three-dimensional systems with a
softened potential (Follana & Laliena, 2000; Sommer-
Larsen et al,, 1998), spherically symmetric three-
dimensional systems {Henriksen & Widrow, 1997;
Davies & Widrow, 1997; Perez & Aly, 1996; Perez et
al., 1996; Henriksen & Widrow, 1995), two-dimensional
systems (El-Zant, 1998; Medvedev, 2000;: Gromov,
1995) both with cylindrical and without cylindrical
symmetry and one-dimensional systems (Tsuchiya et
al., 1996; 1998; Aurell et al., 1999).

One problematic aspect of the physics of many-body
systems with gravitational interactions has to do with
their equilibrium thermodynamics. Miller (1974) and
Rybicki (1971) pointed out that the thermodynamics of
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self-gravitating may be counterintuitive. A great part
of our intuition about the behavior of many-body systems
has been acquired from what is known about systems
with short-range interactions. Because of this it is not
unreasonable to ask how the thermodynamics of
systems with long-range interactions is different.

Studies on the thermodynamics of the one dimensional
gravitational gas (1DGG), i.e., a system of very large
parallel mass sheets, have been done by Salzberg (1965)
and by Muriel et al. (1994). Salzberg (1965) calculated
the equation of state, entropy, enthalpy and the Gibbs
free energy for a 1DGG in a box with one movable
wall. Later, Muriel et al. (1994) obtained the exact
partition function, equation of state, mean internal energy,
and heat capacities at constant pressure and constant
volume of a 1DGG with an arbitrary number of particles
in a box.

In this paper, we study the thermodynamics ofa 1DGG
in a uniform external field by adopting the methods used
in Muriel et al. (1994). The paper is organized as follows:
In Section 2, we write the expression for the total energy
of the 1DGG in a uniform external field. In Section 3,
we derive an analytical expression for the partition
function of the system. In Section 4, we obtain
expresstons for the equation of state, mean internal
energy, and heat capacity at constant volume. We
conclude the paper in Section 5.
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THE ONE-DIMENSIONAL
GRAVITATIONAL GAS

The gravitational potential energy of a pair of very large
parallel sheets. which we shall label i and |, is given by
Gmﬂm}, Jx - ,\'[! where (7 is a gravitational constant, n,
and m, are their “*masses’, and [x, - x| is the distance
between the particles. (Note that we will use the terms
‘sheet” and “particle” interchangeably.) The total energy
of the N-particle 1DGG under the influence of an
external field is
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where m is the mass of each particle, g is the strength
of the external field, x, and p, are the ith particle’s
position and momentum,respectively.
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rewritten as

< x, .the total energy can be
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We emphasize that although eq. 2 is true only if
x, <x,<x, .<x,  <x, nothing prevents us from
re- m(lemnu the paiticles in the system.

EVALUATION OF THE PARTITION
FUNCTION

The partition function is evaluated using

Z=mer j “‘[ (dx, dp, ye " Fron (3)

where = 1/k7 is the inverse temperature, and A is
Planek’s constant. Planck’s constant will not appear in
the final cxpressions for the equation of state, mean
internal energy, and constant volume heat capacity but
is being introduced merely to male the expression for
the partition function consistent with its quantum
mechanical counterpart. After performing the
momentum integrations, substituting the expression for
the total energy given by (2} into the expression for the
partition function {3), noting that for an N-particle

system, there are N! possible orderings, and separating
the integrals we can express the partition function as
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where v =G, mg=ay, and L is the ‘volume’ of the
system.

In evafuating the above multiple integrals, it is useful to
detine the following auxiliary variabies:
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Differentiating each of the above espressions (5), taking
their corresponding Laplace transforms, and dividing
both sides of the resulting equations by s gives
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Note that the g’s in (6) are the Laplace transforms of
the £'s in (5). By evaluating the recursion relations in
(6) sequentially, and simplifying the sums of arithmetic
progressions that arise in the process, we obtain the
tollowing expression for g, (s):
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The partition function can now be written as
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where A7 is the inverse Laplace transform, which
can be evaluated using the Bromwich integral formula:
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Qoo
so that all poles of g(+) in the complex plane are to the

left of the line Re(z) = a.

Forall irrational values of o and almost all rational values,
the expression for the partition function can be written
more explicitly as:
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This expression for the partition function will have to
be modified for some rational values of « to account
for the residues of second or higher order poles that
result when ordinarily distinct poles coincide. We see
no reason to expect qualitative changes in the
thermodynamics of the classical 1DGG under the
influence of an external field for these special rational
values of @ ( as it is always possible to approximate a
rational number with a sequence of irrational numbers
and we do not expect any “quantization effects” in our
sysiem).

Thermodynamics of a One-Dimensional Gravitational Gas

THERMODYNAMIC QUANTITIES AND
RELATIONS

By using the final form of the partition function (9), we
obtain the following:

Equation of state: The pressure p, *volume’ L, and
inverse temperature £ of the system are related as
follows

p=t Pl @ (1)
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Mean internal energy:
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CONCLUSION

In this paper. we presented exact analytical results on
the statistical thermodynamics of the one-dimensional
gravitational gas in a uniform external field. This is an
addition to the small roster of classical gas models with
exactly solvable statistical thermodynamics.
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