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EXTENDED ABSTRACT

Modeling complex systems is basically a two-fold
process. The first step involves formulation of the
dynamical relations which wvsually takes the form of
differential equations (DE) while the second step
engages in determination of the relationship between
dynanmical variables. Each of the task is significant and
oftentimes, equally difficult. For example, when the
relevant DEs of interacting systems are nrepared, say
the Lotka - Volterra equations for predator-prey models
or the hydrodynamical equations for fluid motion, the
problem of solving this equation is equally formidable
since in many cases DE has no known analytic solution.
One way of solving DE is by transforming its
coordinates such that it resembles a form with known
analytic solution. Such process however is generally
tedious, or at warst will never work because such
transformation does not exist in the first place. A more
common approach is by utilizing numerical techniques
{e.g.. finite-difference, Runge Kutta, etc.) which
generally relies on the accuracy of the sampling interval.
However, numerical methods provide an iterative
representation of the solution and hence, the error
propagates at later iterations. Another way is by using
neural networks (NN). Recently we have shown that
an unsupervised NN trained using the modified
backprapagation method can solve differential equation
that: (1) models the propagation of pulse in a nonlinear
media, (2} replicates the arrangement of competing
biological entities in a given space, and (3) determines
the optimum design Tor a nuclear reactor (Monterola
& Saloma. 1998: Montercla & Saloma, 2000). [n this
study we analyze formally how accurately NN can
solve linear DEs, and we propose an approach in
increasing the accuracy of'the solution obtained by NN
for general types of DEs. We utilize a three layer
unsupervised NN with inputs { x X} insolving
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the DE which is given by F(x .x,, ..., x )= D¥ {x,x,,
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... X )=0, where the D is a differential operator and
x;’s are the dynamical parameters. The s"- output vy ®
corresponding to the k"-set of inputs of the NN, is given
by Wsm :fn (Zm:l,u dsmmym(kj): y,= fﬂ(EFLL ¥ fm_imrj)
where ris the j* input, y ® gives the m" output of the
hidden nodes {m=1,2 ... H}, f (z)=tanh(z) and { {z) =
z represents the hidden and output activation functions,
respectively. Parameter w (k) describes the
tnterconnection weights betwceen neurons in the m™ and
the j" layer while d (k) gives the synaptic strength of
the s" and m™ layer.

Learning of NN is accomplished by updating the weights
d_*and w ®using the gradient descent method such
that it minimizes F and simultaneously satisfies the
boundary conditions B(x .x,, ... ,x ) =0 (Monterola &
Saloma, 1998; Monterola & Saloma, 2000 &Haykin,
1999). Meaning, w_*'"= \xfm“" —n@Elkb’@wm}‘k’ - OB
Yow &0 where E = (F) + (B). If we can reduce E
to exactly zero, then it is guaranteed that the NN solution
. is exactly equivalent to the true analytic solution
Y., or the normalized mean square error £ = Zjy, _ -
w, P/ 2y, [P approaches zero. However in actuality,
E can only be lowered up to some finite value d after k
iterations owing to both computer and NN architectural
limitations. Can we therefore correlate & with £2 This
is an important and nontrivial problem for a NN DE
solver since it will provide a compact stopping rule in a
learning NN. Also, for problems with no known analytic

solution, it will altow an estimate of the accuracy of
‘pnn'

We formally derive a carrelation of & with £ for any
linear DE ( i.e,, D=adYdx"+a_d"'/dx™' + ..+a)
and show that £(8) =Z| (A-Tyy_-oF / Z |[Ay_- &

where A is a constant that is fixed using the BCs of the
problem. This result is obtained by manipulating the
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particular solution of the family of curves defined by F.
(Rainville & Bedient, 1981). We test our prediction for
a harmonic oscillator from which Dy=(d¥dx* +1 =0,
with the imposition that =1 at x= 0. Fig. | shows that
a (solid square) decreases exponentially as the iteration
number k increases, a signature characteristic of a
generalizing NN, Comparison of our prediction (filled
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Fig. 1. Linear differential equation. Comparison of the
actual normalized mean square error £ ({) and the
predicted error (@) for its corresponding & (M)
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circle) with the actual & (open squares) shows good
agreement when 6 is reduced to a sufficiently small value
(8 < 10), the period when the NN learns the solution.
When 8 is large, weights of the NN undergo large
fluctuation and the prediction is expected to fail because
of the inherent instability of the NN (Haykin, 1999).

The very diversified forms of nonlinear DEs made the
problem of determining an exact relation between &
and & seemingly impossible (Rainville & Bedient, 1981).
Here, we propose a starting numerical method that can
possibly gauge the accuracy of the NN’s solution from
o utilizing both extrapolation and curve fitting. In
particular we consider the nonlinear Schroedinger
equation (NSE) that models the propagation of a pulse
in a nonlinear dispersive waveguide. NSE has no known
analytic solution for an arbitrary initial pulse and is
usually treated by employing numerical methods
(Monterola & Saloma, 2000). Shown in Fig. 2 are the
plots of 6 and & against increasing iterations for different
values of medium’s nonlinearity N when the NN is used
to solve NSE. Notice that there are no apparent trends
regarding the relation of £ and & for N=1,23, and 4.
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Fig. 2. Nonlinear Schroedinger Equation. The energy function 8(00) and its corresponding rormalized mean SqQuAare erear

Z (O} as a function of training iterations for different nonlinearities (N=1. 2, 3 .4) of the medium in the NSE
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Using the information available on the energy & and
the corresponding input-output pairs of the NN, we
extrapolate the solution y for the case of
o = 0. Since the error variance of each fitting
procedure is known, we can determine the curve
that best fits the y-& pairs. Thus, the remaining
problem is to numerically predict & from the best
curve-a starting point that reduces the abstraction
of the problem and we hope allows us to treat
systematically each variety of non linear DE. Even if
this might fail however, the procedure already merits
from the fact that it increases the accuracy of y as
shown in Fig. 3, where we fit six functions namely:
linear (Ax +B); quadratic (Ax*+ Bx +C); exponential |
(A exp™); exponential 2{A exp™ €} and power law
(AB), A, B and C are fitting parameters. Note that
even without a priori information of w,__, we can
improve the accuracy by extrapolating the solution when
& is zero. Such result is evidently significant for N=3
and 4. This procedure also reduces the NN training
time if our concern is just accuracy of v, .
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Fig. 3. Nonlinear Schroedinger Equation. Error & the NN
solution v is extrapolated at 5 = 0 using various fitting
functions.

Selving DE using NN has the following advantages:
(1) solution obtained is non- iterative; (2) the mapping
is fast because of the inherent parallelism of the
architecture; and (3) the method is straightforward since
no tedious coordinate transformation is necessary.
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