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ABSTRACT

We demonstrate that a neural network composed of only three nodes and three connections arranged in a
2-inputs, 1-middle, 1-output architecture is able to perform differentiation of univariate functions ).
Using a proposed empirical technique, we assess the network’s generalization capability by approximating
a functional form for the growth function 4(N). We calculated the probability of error to be ~ 107 allowing
us to justify the effectiveness of the simplistic approach in modeling a non-trivial task such as B.
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INTRODUCTION

The inherent complexity of nature channels efforts to
propose theories of brain function into the following
directions: (1) The complexity of the brain tells us that
it is important to first understand some basic principles
of information processing that it uses for its interaction
with the environment. The principles can then guide
the quest towards a detailed one-to-one understandin J
of the brain. (2) The complexity of the environment,
which by far exceeds even the complexity of the brain
tels us that whatever analysis the brain is doing, it must
have found algorithms that achieve this task very
efficiently (Stetter & Obermayer, 1999).

The fundamental problem of relating structure and
function in biological neural systems provides impetus
to simulating solutions by means of artificial neural
networks. A significant research interest for artificial
neural networks is the search for fast, approximate
solutions to non-trivial problems by a network of simple
processors providing local and partial solutions in
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paralfel. In this spirit, attempts should be made to avoid
fully connected feedforward networks (Bose & Liang,
1996).

The rationale of this study is mainly to address the issue
of modeling specialized functions of the brain in terms
of simple neural networks characterized by small
numbers of nodes and connections. One particular task,
namely, differentiation of univariate functions D) is
tackled in this study. The task D is crucial in the brain’s
recognition and detection of rates of change, for
instance, motion, which is the rate of chan ge of position
of a body under observation.

METHODOLOGY

The feedforward architecture shown in Fig. 1is
implemented to perform . The network was trained
using a set consisting of N = 79 random values of x
uniformly distributed over the interval (-1,1). The shaded
circles denote the input nodes; £ is the sam ple function,
and & acts as a numerical tolerance. The parameter p,
and p, are the weights of the connection of these input
nodes to the middle node.
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Fig. 1. Schematic diagram of the neural network

The middle node is characterized by a Avperbolic-
fangent activation; W = o tank(x), wherein o denotes
amplitude. The weight parameter ¢ links the middle
node to the output node Q. The neural network is trained
iteratively (in epochs) over the N exemplars untii the
total error 1s no greater than a preferred stopping
criterion [ | < 1.

-

The goal after training phase is to assess the
zeneralization performance of the neural network by
virtue of testing it with novel sets of data not included
in the training set, i.e., with a new function ' overa
wider interval (-R, R).

RESULTS AND DISCUSSION

After a network has successfully learned a set of N
training exemplars, the usefulness of the learned
network depends on the accuracy of the network’s
predictions of the output for future exemplars (Bose &
Liang, 1996).

The neural network was trained to differentiate cos(x)
over a unit interval for 500 epochs (Fig. 2). The hope

after training is for the network to be able to learn and
generalize a non-finear mapping that transforms any
function into its derivative over a bounded two-
dimensional window. This transformation is not trivial
at all. To demonstrate the generalization capability of
the network after training, we tested it by using new
functions and extending the domain set (Fig. 3).
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Fig. 3. Derivatives of some important functions in physics:
3a. Cos (x); 3b. Lorentzian function; 3c. Sine function: 3d.
Cauchy function over x € (-20, 20)

Assessment of the generalization capability is
theoretically anchored in Vapnik-Chervonenkis theory
(Bose & Liang, 1996). We use the result of Baum &
Haussler (1989), to estimate a measure, which tells us
how confident one can be about the performance of
the network on future exemplars.

A useful bound is the probability of

error (@) for the mapping ¢ realized
by the trained network. Let F be the

datapoints - -
f{x) = -gin (x) —

class of functions on M2 If N
exemplars (x, ¢ (x)), x € 9? were
randomly chosen according to uniform
~, probability distribution (Fig. 2a), then
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Fig. 2a. Distribution of the training variable; Fig. 2b. Training set consisting of
input and desired output. Training Tunction is cos(x) over the unit interval {-1,1).
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of the training exemplars is bounded
by the inequality (Vapnik, 1982)



Pre(d) >ele(d) < (1-y)e < 8A, (Njexp(-YeNid) (1)

The growth function D (N) is not easy to determine
analytically especially for networks that utilize non-
linear activation functions and output real instead of
discrete (binary) values. In this spirit, we propose to
find an approximate analytic expression for the growth
function in order to analyze the network’s generalization
ability. Our motivation stems from the property that for
stmple networks with a small number of free
parameters, the training error is a “good” predictor for
the generalization error (Cortes, 1995; Vapnik, 1982).
Thus, through an empirical technique it is possible to
deduce the functional form of D (V) by plotting the
average training error <e > over # trials versus different
sizes of the training set ¥ (Fig. 4).

The simple technique that we employed yields this
important relation,

AN = 005N log N (2)

By considering the worst-case whercin the probability
of error yvields,

Prlerd) =e] < 107

Such a smal] magnitude on the upper bound for the
probability of error guarantees that the network
generalizes sufticiently for any new exemplars. This
implics the property that although the network was
only trained to differentiate cos(x) over (-1,1), it is
capable of performing the same task on any
univariate function over (-R,R) where R >1. This is
illustrated in Fig. 3.
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Fig. 4. The growth function approximately varies as 0.05 ¥ log N
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CONCLUSION

We have shown that a simple neural network is able to
perform as essential a task as univariate differentiation.
The growth function D (N) was determined to be
proportional to N log N. This enabled the calculation of
the probability of error, which measures how well the
network performts on new data it has not been trained
with. Although the model that we have presented here
is oversimplified, the result of this study undoubted ly
tells s that it is possible to address the problem of
structure and function —— the formidable challenge
presented by neuronal heterogeneity to any theoretical
approach to network analysis or to the construction of
relevant wiring diagrams of even the most simple circuits
in the brain.
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