Color-Texture Image Analysis of Coral Reefs
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EXTENDED ABSTRACT

Marine scientists assess the condition of coral reefs
from estimates of the population of living corals,
dead corals, algae, rocks, and other animals
coexisting in the reefs. Some popular methods used
for assessment are Line Intercept Transect (LITR)
and In-Situ Mapping (ISMP)} where both methods
employ a diver that notes the population of benthic
organisms in an area of a reef of interest though of
different techniques of sampling. A rapid and
consistent method employed since 1992 to estimate
percentage cover of sessile reef organisms is the
Video Recording (VIDR) (Uychiaoco et al., 1992).
The area of interest is filmed and then processed by
a method called®ideo Point Sampling (VIDS)
(Carleton & Done, 1995). Expert individuals estimate
the percent cover through random or fixed points
placed on the monitor screen while the film is paused
at random or even intervals and identifying the items
underlying the sampling points on the appropriate
benthos category (e.g. alive coral, dead coral, rock).
A software called FointCount'99 (http://
www.cofc.edu/~coral/pc99/Peppintro.htm) also
operates as that of the VIDS, using the random point
count method and still requiring user-intervention to
classify items at specified points. Assessment in the
said methods is visual, requiring a trained eye and
experience. By automating the assessment with a
computer, the analysis is more precise, less
subjective and iess tedious.
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Fig. 1. An image of a coral reef area {image courtesy of the
Australian Institute of Marine Science)

In computer vision, several techniques for image
classification using color and texture have been
developed. Color is a property of one point in the
digitized image. Pattern recognition techniques using
color often operate on the color distribution alone,
ignoring the spatial, black and white (tonal) property of
regions in the image which can be provided by the
texture. Recently, these two features have been
combined as one feature called color-fexiure, or the
spatial distribution of colors in a region. Coral reefs
have various color and texture and regular 3D
structures that are cues used by scientists for
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classification. The objective now is to investigate
existing color-texture paradigms and 3D texture
classtfication techniques to classify images of coral
reefs.

There are two kinds of color-texture paradigms that
were considered recently. The first kind is when color
and texture are considered as separate features, such
as the paradigm used by M. Pietikainen et al., (1996),
wherein the color and texture features are
concatenated to form the color-texture feature vector.
The second kind of color-texture paradigm is to consider
color and texture as only one feature. Such are the
approaches done by J. Huang etal., (1997), where the
correlation statistics (correlogram) of each pixel in an
indexed image will serve as the color-texture feature.
The same kind of approach was done by R. Kondepudy
et al., (1994), where the correlation of a pixel in an
image (of RGB bands) with the pixels inside and outside
a band would serve as the color-texture feature. In
this study, the first color-texture paradigm mentioned
was implemented.

A digitized video of regions of corals from Australia’s
Great Barricr Reef was used for testing. Six classes
were used: (1) abiotic (rock, rubble, sand); (2) live
coral; (3) dead coral (with or without algae); (4) algae;
(5) soft coral; and (6) other fauna (organisms other
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than corals), and these classes were manually classified
by a marine scientist and will be used as ground truth.
Using Matlab (a powerful matrix calculation software),
items of each class were cut from the images that were
frame-grabbed at equal intervals. The average
histogram of each class was computed in color spaces
such as HSV thue-saturation-value), normalized re,
and NTSC standard. 1t was determined that HSV gives
better separation than the other color spaces mentioned.

The texture operator known as Local Binary Patierns
(LBP) (Ojala & Pietikainen, 1999) were employed as
texture descriptor. The code was also implemented in
Muatlab. LBP is very robust to rotations, brightness
change and Gaussian blurring (Soriano et al., 2000y and
is capable of recognizing 3D textures better than any
other texture paradigm. Fig. 3 illustrates the LBP ("8
is for 8 pixels)technique. The gray-level values of each
pixel in a 3x3 neighborhood containing 8 pixels is
thresholded to the gray value of the center pixel
(Fig. 3a). If the value of the pixcl is greater than the
gray value of the center pixel, a value of | is assigned
to it, and if lesser, a value of 0. This “binarizes” the
whole tmage (Fig. 3b). Weights (Fig. 3c) are then
multiplied to the binary image to obtain the LBP image
(Fig. 3d). Invariance to grayscale transformation was
achieved by computing the joint distribution of gray
values of a 3x3 circularly symmetric neighbor set of
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Fig. 2. Hue-Saturation histograms for the 6 classes for an image size of 160x120 pixels




Marcos et al,

6{5]2

71601

913|7
a

Fig. 3. LBP method (image: Ojala & Pietikainen, 1999); 3a.
3x3 circularly symmetric neighbor set of 8 pixels; 3b. 9
“uniform™ patterns considered, black=0; white=1

eight pixels {computed through bilinear interpolation of
the gray values of the diagonal pixels) and thresholding
the local neighborhood at the gray valuc of the center
pixel into a binary pattern (Fig. 4a). The LBP histograms
for each class were computed but a suboptimal resutt
was obtained because of the same points of
occurrences of the peaks at certain bins. It was resolved
that these points were simply rotations of neighbor sets
having two spatial transitions (bitwise 0/] changes).
Thus, a rotation invariant texture descriptor called
LBP 7 (Ojala et al., 2000) was investigated to compute
for the histograms of the 6 classes. [n this technique.
only 9 LI3P values are considered that exhibit the 9
“uniform” patterns given in Fig. 4b. Each of these
values has a corresponding bin and the other rotation
patterns are compressed into the 10" bin.
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Fig. 4b. 9 "uniform™ palterns considered. black = {;
while = |

Fig. 4, LBP, ™ incthod (image: Ojala et al., 2000)
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Both color and texture histograms were again computed
for reduced image sizes, and it was found that distinct
features for color and texture are obtained at an image
size of 160x120 pixels. Fig. 5 shows the LBP ™
histograms for the 6 classes at a size of 160x120. The
bin size was cut down from 255 (LBP) to 10 (L8P )
bins. We note that cach class has a unique histogram,
although class (2), alive corals, and ¢lass (3), dead cortals,
have almost the same shape of histogram but different
in peak values. This is expected since there is no
alteration in texture and structure when corals die, only
they become bleached (pale white) or covered with
algae.

Classification was achieved through two techniques.
The first technique is the log-likelihood ratio statistics
called the G-statistics. A test sample of histogram S, is
classified to a model M, with the smallest value for G
where

S, = sample histogram
M, = model histogram

B = numberofbins
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The other technique for classification is through Neural
Network.

The HS histograms were parameterized through PCA
(Principal Components Analysis) resulting to 21
coefficients (Fig. 6). This was done to reduce the 2-12
histogram into a 1-D featurc in application for
(i-statistics. For the Neural Network, the training set
of sparser classes were shown to the network more
often, i.e. the training set was evened out through
repetition. The color-texture feature was obtained
through concatenating the HS histograms (HS-
coefficients for the G-statistics) which is the color
feature, with the LBP"* histograms which is the
texture feature. Classification is then implemented using
color alone, texture alone, and finally color and texture
combined.

Table 1 shows the results after classification. There
were consistent high recognition rate values for alive
corals in color and color-texture for both classification
techniques. Using texturc only in the classification,
recognition was obtained for more than 2 classes. Also,
algae, soft coral and other fauna were classified poorly
and inconsistently using Neural Network.
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Fig. 6. Plot of the Hue-Saluration cocfficients for 6 classes through PCA
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Table 1. % Recognition rates for G-statistics and Neural Network (NN}

G-statistics NN (uneven samples) NN (even samples)

Class Color Texture Color- Color Texture Color- Color Texture Color-

Texture Texture Texture
(1) Abiotic 0 57.9 10.5 0] 95 0 53 B9.5 0
{2) Alive Coral 86.6 7.5 58.2 7 62.6 100 85.1 16.4 94
(3) Dead Coral 4.8 14.3 4.8 4.8 0 4.8 48 4.8 0
{4) Algae 0 100 66.7 0 0 0 0 100 0
(5) Soft Coral 0 100 50 0 50 0 0 t] 0
{6} Other fauna 0 0 4] 0 0 G 0 a 0

Alive corals are the most successfully recognized class
in both G-statistics and the Neural Network. As a
feature for classification, texture is more discriminating
than color. The poor results do not mean that combining
color and texture as one feature does not improve the
recognition rates. It only means that the paradigm used
is not sufficient to classify coral images. Also, poor
classification may be due to uneven number of sarnples
and less samples for some classes. Therefore, it is
recommended that the number of samples per class
for training be increased. Reduction of the number of
classes (e.g. dead and alive corals only) can also be
implemented. If better classification is still not achieved,
then other texture paradigms for feature extraction
should be investigated (e.g., Gabor wavelets, Gaussian
Markov Random Fields, etc.).
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