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ABSTRACT

We developed a new approach to the perturbation theory for the effective Hamiltonian of condensate
particlesin Fock space. Using this new theory, we can easily analyze the effect of including a somewhat
problematic term in the work of Ezawaet a. We thus showed that indeed, theinclusion of thisterminthe

perturbation potential isjustified.

INTRODUCTION

The phenomenon of the Bose-Einstein condensation,
first observed (Anderson et a., 1995) for 5’Rb at 170
K, followed by the cases (Davis et a., 1996; Bradley
et al., 1997) of #Na, “Li, and 'H, has excited
experimental and theoretical interests on different
aspects of this quantum effect. In particular, Ezawa et
al. (1998) studied the fluctuation of the condensate by
modifying the Bogoliubov prescription (Bogoliubov,
1947) in replacing a, by / N, with (Ezawa & Luban,
1967; Ezawa, 1965)

a, —> | Ny +a, (1)

where Noisthe number of condensate particlesand a,
the annihilation operator. Thiswork was donewith the
maodified Oppenheimer approach to perturbation theory
in Fock space to obtain the effective Hamiltonian for
the condensate, using A= (\/VO ) " as the strength
parameter. It was then shown that the fluctuations are
much less than N, thus justifying Bogoliubov’s
prescription.

In thiswork, aterm

HR=>"J,(al+a,)(a +a,) 2

n#0
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which is of zero-th order in A was included in the
perturbation, and the perturbation was carried out to
second order in A Thisisunusual in perturbation work.
We shall therefore consider the contributions of these
termsto higher ordersto seek justification for thiswork.

THE SYSTEM HAMILTONIAN

The Hamiltonian for a Bose-Einstein gasin atrap is
2
H = J.¢; (x){— 2?” A+v(x)—,u}¢A (x)d’x

+3 [0 (30 (W (x=3)0, ()9, (') d s
©)

where v(x) is the trap potential and V(x) = V(-x), the
interaction. The former, which varies much more
dowly thanthelatter, isthe chemical potential. Interms

of the new field a ', the field operator takes the form

P, (x)=\/ﬁou(x)+¢(x) 4)
where ¢(x)=> a,u,(x). The operator a, shall

henceforth be taken to mean a,.
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Termslinear in (x) will arisein H and can be eliminated
by adding and subtracting the Hartree potential

v, (x)=N, IV(x—x')uoz(x')d3x 5

S0 that
2

1= 0109 v, () ()0, ()
+3 [01 (0L ()Y (v=2)0, (x)9, () d s
[0} (e (1), (x) ®

Thefunctionsu (x) are chosento bereal eigenfunctions
of h2

h:—ﬁA+V(X)+VH (X) . @)
Inview of the short range of theinteraction ascompared
to the wavelength of the atoms, people take the delta-
function approximation

4rh’a
M

where a is the scattering length of the atoms, so that
Eq. (7) simplifies as

v(x—x")=gd(x—x') and g= (8)

2

h=- h
2M

A+v(x)+gNqus (x) 9

Although we have a set of non-linear eigenvalue
equations, it is easy to reflect that we still have a
complete orthonormal set of eigenfunctions.

The Hamiltonian of the system can now be written as

H=E,+Y (&~ u)aja, +-[N, (&, - )(a) +a,)

+%Z J,, (a:; +am)(a;r +an)

m,n

+/12 K, (a;raman + afa;rlan)

l,m,n

+A? Z L,.aa'aa (10)
k,l,m,n
where
_ 1. 5 4 s 1
EO—NOSO—ENOg ug (x)d x—EZJm (12)

72

and L

‘klmn

= &N Ju, (x)u, (x)u,, (x)u, (x)d’x

withJ =L andK

Imn

oomn - LOlmn .

EZAWA’S PERTURBATION APPROACH

Ezawa s perturbation theory isformulated to solvefor
the effective Hamiltonian

A, = AT+ A AND + AP+ (12)
in Hy, =yA, (13)
where

v, =A,|n)=(1+ 24P + AP +_)|n)  (14)

with A being an operator in the Hilbert space H, H . of
the total system, and A is an operator in H_..

The perturbation problem isformulated by dividing H
into three parts: H ., which actsonly onthe condensate;
H, , which actsonly on the out-of condensate particles;
and H,., which involves the interaction between
condensate and out-of-condensate particles. The
unperturbed Hamiltonian is then taken to be the terms
down to the zero-th order term inHB and H o giver the
names H, and H,.. The rest of the terms are taken as
the perturbation. We notethat H, . containsazero-order
termin A.

In the lowest order, Ezawa et al. (1998) got
A =0, and

1
A(O) :WO+§JOO(ag+aO):WO+JOOx§ ) (15)

1 .
where x, =ﬁ(ag +ao). Higher order terms are
obtained after diagonalizing H, , a process which
involves only an orthogonal transformation to handle
mutual i nteraction between out-of-condensate particles.
Using the perturbation formula

A® = H.P.(O[VA®|0) +[ H..(m[a®|0)],



the result obtained was

2
A®=_Po_, Po_ Py

om, " 2m, + Kx3 + K x5

+L, (x0p§ + pgxo) +L, (xopo + poxo) (16)

where p, =—i

1
E(ao—ag) .
NEW PERTURBATION METHOD

To investigate the higher order terms dueto H, ©
shall assume that the perturbation consists of only this
temV=H,6 © sothat

BC’

H=H,+H_.+V. an

The perturbation approach is obtained by writing

v, =L+ L)|m)+ X[,

=(1+L)P|n)+ K (1+L)|n)
where

1+L

Klm)=2 |} L= Ji) L (

i#n i#n

(18)

P is the projector to the condensate factor. We now

define
C=ln)+ XL

v, l//n 1+L
=P|n>+K|n> . (29)

The effective Hamiltonian can now be replaced by

=(1+L)A, (1+L)" (20)
which satisfies the equation
HW}‘L‘:WH‘AHI (21)

From this new eigenvalue equation, we break it up into
two parts by projecting it with respect to P and

Q=1-P, giving
P(W,+H.)(P+K)|n)=P(P+K)A,'
-PV(P+K

)
)

(22)
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and Q(H,+H.)(P+K)|n)=

|

—QV(P+K)|n).
(23)
Thismeansthat we can simplify the problem by finding
a perturbation operator K = QKP satisfying
corresponding operator egquation

P(W,+H_.)(P+K)=P(P+K)A,'=PV(P+K)

(24)
and
O(H,+H.)K=QKPA,'-QV(P+K) (25
The P equation can be ssimplified into
P(W,+H.)P=PA,'-PV(P+K) (26)

which allows A, ' to be solved for once K is found.
Furthermore, QKP can be left multiplied into this
equation to give

OKP(W, + H.)P=QKPA,'-QKPV (P+K) (27)

from which the term containing A, * can be eliminated
with Eq. (25), yielding

O(H-W,)K+Q[H.,K|P=(K-0Q)V(P+K)

(28)
The role of this equation is to determine K

perturbatively, whether Egs. (26) and (28) are the
working equations of this perturbation approach.

RESULTS OF PERTURBATION

Using this new approach to perturbation, we get

V:ZJnO(aI+an)(ag+aO) (29)
n#0
the first order result of Ezawaet al.,
K®=—- 0 VP. (30)
B~ "o
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In fact we see that K will be a polynomial in

(aj +a,)=+/2x, sothat the term Q[H ,K]P vanishes

to all orders, and the equation that determines K
simplifiesto

__9

Wo _Hc

which is similar in form to the results of regular
perturbation theory in operator form developed by
Speisman (1957), and, therefore, we immediately get

_9
WO_HB

(O-K)V(P+K) (31

K(Z) — I:VK(l) _ K(l)V]

0 , ©

= VP
WO_HB WO_HB

(32)

_ {V o , 0
WO_HB WO_HB WO_HB

— VPV 0 VP}
WO_HB WO_HB

Finally, the new Hamiltonian is given by substituting
these expressions for K into Eq. (26). Explicitly, A® is
proportional to x? and A" proportional to x,%. Since x,
was estimated to be a small quantity in Ezawa’ swork,
we see that indeed, we have explicitly verified that the
procedureto include H, © in Visjustified.

VP

(33)
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