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INTRODUCTION

In clean layered structure of normal metal and
superconductor, Andreev-bound states are formed in
the normal metallic part through multiple Andreev
reflections (Andreev, 1964 & 1967) of the electron and
hole waves. In the Andreev approximation (AA)
(Andreev, 1964 & 1967), theincident electron towards
anormal metal-superconductor (NS) interface will be
reflected as a hole. Exact analysis, however, shows a
small amplitude of anormally reflected electron (Sipr
& Gyorffy, 1996). Inmost studies(Larkin & Yu, 1975),
Andreev-bound states are described using the
quasiclassical description, which can be shown to be
equivalent to AA (Ashida et al., 1982). Interestingly,
Andreev approximation works remarkably well
(Blaauboer et al., 1996). In this paper, we want to
investigate thereliability of AA by varying thetransverse
dimensions (dimensions perpendicular to the flow of
current) of amesoscopic superconductor-normal metal-
superconductor (SNS) sample (Bagwell, 1999). In most
systems considered so far (Tanaka & Tsukada, 1991),
the transverse dimensions which the breakdown of the
Andreev approximation can hardly show up are
considered infinite.

THEORY

Throughout the paper, Rydberg atomic units are used—
the energy is in Rydberg, the distance is in Bohr
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(1Bohr ~0.5A), h= 1, and the electronic mass is 1/2.
The Green’sfunction formalismisoutlined extensively
by Koperdraad et a. (1995). It is an extension of the
microscopic theory used by Tanaka& Tsukada (1991),
inthat the electron-hole scattering propertiesaretreated
exactly.

The matrix Green’s function satisfies the equation

i, +Vi+u  —A(r) .
[ —A(r) iwn—vz—ij(” io,)
=5(r-r')1 (D)

in which the differential operator is closely related to
the operator in the Bogoliubov-de Gennes (BdG)
equations

[‘V,z“‘ Ar) J‘I’(r)=E‘I’(r)

A (r) VZ+u
e
v(r) @)

apart from the replacement of £ by iw . The quantity
o , whichisequal to = mmk,T, iscalled the Matsubara
frequency. For asystem of fermions, nisan odd integer.
Possible inhomogeneities of the system are fully
represented by the r dependence of the gap function.
The spinor wave function W(r) describes quasiparticle
excitations, and the energy E is measured with respect
tothe Fermi energy . EQ. (1) isderived using thefinite
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temperature Green'sfunction formalism (Abrikosov et
a., 1963 & 1965) by manipulating the equations of
motion instead of the often used diagrammatic analysis.
The SNS system we consider is shown in Fig. 1. The
gap function A has a constant complex value in the
superconducting part and zero in the normal part. This
model of the gap ignoresthe proximity effect. Asfar as
the transverse directions are concerned, the general
solution of Eq. (1) can be expressed as aFourier series

T

expansionin sin k y and sin k_zinwhich k, =n£

.
nri

and k_ = . The functions sink;y and sink_z

areinfact thetransverse solutions of the BdG equations
with the boundary conditions'¥(x,0,0) =¥(x, L ,L) =0.
Thus, we have '

G(r,rio, =i G(x,x"k k' ,k k', iw,
LL s
Yy z

Xsink,ysink' y'sink_zsink'_ z'

3)

InEq. (3), thesummation extendsover al alowed vaues
of k,,k',,k_,k'.. The Fourier coefficient becomesthe
G(x,xk,.k', .k k' ,iw,)Green’s function of the
quasiparticle motion along the x-direction, which can
be seen by substituting Eq. (1) with Eq. (3):

2

io, +%+ k2 A
2

* . 2

-A 1w, _ﬁ_kﬂ

X G(x,x',ky,k'y,l’cz,k'Z Jim,)) = 5('x_'x‘)5k‘,,k",5k:,k':

(4)

where k; =pu—k:—k?. Eq. (4) demonstrates
that G(x,x'k,.k',.k..k'_,iw,)is diagonal tok, and k..
In calculating the local density of states and the self-
consistent gap function, we will need the Green's
function for diagonal spatial coordinates. Aslong aswe
keep x# x', we can already takey =y’ and z =z’ in
Eq. (3). Since we are only interested in the variations
over the longitudinal direction x, we can average over
thetransversedimensions. By that, Eq. (3) simplifiesto
the series:
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Fig. 1. The geometry of the SNS system considered.

G(x,x',ia)n)zi Z G(x,x"k,,k_,iw,) -
o ko k 5

The solution of Eq. (4) for a superconducting bar, that
iswhen the system shownin Fig. 1iscomposed mainly
of asuperconducting material without the normal metal,
is

G?(x'xl’k)"kz’ia)n) = ngl//g’(x<)%+ (x>)

=>dJwd ()P (x)  (6)

where
o uaeit/)/Z o
Vs = [u;iae-m/zje N (7)
W(x) — (u;re—m/zu;aenp/z )eim/k;’x (8)
1

d =— 9

S AQkS ©
iQ; = (i@,)’ A (10)
ul = \/E+ o\ E*—|A] (1)
kS =\/k§} +oyE? -|A] (12)



= Uk K (13)
¢ isthe phase of the complex constant A. The index o
refers to the type of particle (electronlike for o = +1
and holelike for o = -1), and the index » indicates the
direction of propagation (v =+1totherightand v=-1
to the left).

The solution of Eq. (4) for an NS system (single
interface) is,

(x,x'k, ki, )=GO.(x x'k,,k iw,)d,,
+Zdv;dv W (e T (x)

VjV J
(14)
where

Gy (x,x"k, ki) = Zd‘,]l//‘,ﬂ(x)l% “(x) (19)

with 1 = sgn(x—"). For multiple interfaces, that is, for
arbitrary number of layers

(xx k,,
(x,x'k, k. io,)(5,,0,+0_,0,,, )

w' -w'Yj+v, )

TR ()

k,,io,)=

V]V J'

V]V J'

+ 2, d5dlw;

ouc'u'

(16)

The quantiti est;’]"v o and T “5re obtained by imposing

the continuity of the Green’sfunction anditsderivative
at the interfaces.

The bound-state energy isdetermined by looking through
the local density of states (LDOS) using the
formula

1
7rLyLZ
xIJiLnOka: ImGll(x,x',k),,

LDOS(x,E) =—
k,.,E+i0d)
(17)

in which G, is the upper left matrix element of the
multiple scattering Green’s function (Eg. (16)). At the
bound-state energy, the LDOS has infinite peak. To
avoid this singularity, the parameter ¢ isintroduced to
broaden the peak so that it acquiresafinite height. The
peaksin the plot of the LDOS against the quasiparticle
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energy must correspond to the Andreev-bound state
energies.

Inthisformalism, the Andreev approximation can easily
be implemented. This approximation amounts to the

replacement
JE2-|Af

k] >k, +o
v 2k,

(18)
if ke, occurs in the exponential and to k. r if
k) occurs as a factor. It is valid when E, |D|<<k2

In the present paper, we investigate its limitation by
looking at configurationsin which EA = kﬁx

The gap function can be determined self-consistently,
using theformula

|4 Y F(x,x'k, .k iw,)

A(x)=-
ﬁL.VLZ @, ky k.

(19)

where F(x,x'k,,k_,i®,) isthe upper right element of
the matrix Green sfunctlon G, j(x,x'k,k_ iw,) and
V isthe pairing interaction amphtude. In carrying out
thecalculation, wefirst substitutein F(x,x"k,,k_,i®,)
the step-like gap profile shown in Fig. 1. We can
determine a new value of the gap by using Eq. (19).
This new value is again substituted in
F(x,x'k,,k_,iw,), and another new value is again
obtained using EqQ. (19). Theiteration is continued until
the differencein the gap values between two successive
iterationsisnegligibly small.

RESULTS

Local density of states

To investigate the reliability of the Andreev
approximation, we focus on the choice of thetransverse
dimensionswhich we choosetobe L, =L, = L,. The

transverse components of the sol utlons of the BAG

equations are sin(k,y) sin(k_z)in which k, =

y

. The different combinations of (k,,k.)

and k. = 7
L
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or (n,,n,)are caled modes whose alowed
values are determined by

2
K2 =,u—(%j (2 +n2)>0.  (20)

1

When the transverse dimension is small, the
second termin theright becomeslarge, and asa
result of which, only afew modeswill beallowed.
If this term exceeds the chemical potentia u ,

k. becomes imaginary, the wave-function is
damped and consequently, such mode cannot
exist. For larger transverse dimensions, the

Local density of states
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second term is smaller whereupon more modes
are alowed. Most of our calculations will be
done for small L, so that only few modes will

Fig. 2. The LDOS against E/A for an SNS system inwhich L, = 13
Bohr.

exist. Wewill tune L, suchthat kﬁ isof thesame
order of magnltudeasthe gap energy A, inwhich
regimethe Andreev approximation (Eg. (18)) is
not valid, and call such L, valueacritical width.

Figs. 2 and 3 show theresultsfor aconfiguration
inwhich (n,,n.)=(2,2) isthe highest allowed
mode. The chemical potentials in the
superconductor and in the normal metal, u, and
u, , respectively, are assumed equal with
magnitude 0.5. Thelongitudinal dimension L of
the normal-metal part is4,000 Bohr and the gap
A istreated as real, with magnitude 0.0001 Ry.
TheLDOSinthe normal-metal part at x = 1,000

Local density of states

Bohr isplotted against E/A. The peaksrepresent
discrete energy states (Blaauboer et al., 1996).
We make the width curves, determined by the
parameter 6 in E + i, wide enough so that the
fundamental features can be seen. The numbers
in parentheses denote the mode to which the energy
belongs. In Fig. 3, the transverse width is determined
by theconditionthat k;. = A for themode (2,2) inwhich
one finds that L, = 12 5676 Bohr; and in Fig. 2 the
transversewidthis L, = 13 Bohr, whichisdlightly larger
than the critical wi dth, but hasthe same allowed modes.
In Fig. 2, the exact results and the AA results coincide
and only three states are found, one for each mode. For
the critical width showninFig. 3, the statesfor thefirst
two modes are @ most unchanged, but for the (2,2) mode
many states are found. The peaks corresponding to the
AA are split in the exact treatment.
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Fig. 3. The LDOS against E/A for x = 1,000 Bohr, L, = 12.5676
Bohr, L = 4,000 Bohr, and A = 0.0001 Ry.

Finally, we want to make a comment on our choices of
thetransversewidths. It will comeout in the next section
that superconductivity is suppressed for transverse
widthsin the order of 20 Bohr or less. This means that
our choicesof L arenot at al appropriate. We made
those choicesto illustrate with clarity the fundamental
features of the Andreev-bound states. If we choose a
larger transverse width in which no suppression of
superconductivity occurs, many states will appear and
the picture would have been quite crowded. The
fundamental features, however, remain unchanged.
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Fig. 4. The self-consistent gap function against the transverse width, L,
for a bar-shaped superconductor at different temperatures. The number

of iterations is 100.

1.2x10°%
= 1.0x10% -ﬁ
T
X 8.0x10% -
: — i
é 6.0xio¢+4 1 | L _99 85104r
e Bohr
3 4.0x10°
2 S N S
O 2.0x10¢
00 +—m———— . — —
-8000 -6000 -4000 -2000 O 2000 4000 6000 8000
(a) Distance from the middle of the system, x
(Bohr)
1.2x10°
& 1.0x10°
2
X 8.0x107 - — L,=1000 Bohr
< --- L,=100 Bohr
-g 60X1 0_7 a4y e L 99 8514
2 Bohr
2 4.0x107 A
@ S N S
‘® 2.0x107
o

0.0

(b)

-8000 -6000 -4000 -2000 O

Distance from the middle of the system, x (Bohr)

2000 4000 6000 8000

Fig. 5. (a) The gap function and (b) the pair amplitude of an SNS

system against

the distance from the middle of the system chosen

at x = 0. Theinterfaces are located at x = +2000.
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Self-consistent gap function

We first present the results of the self-
consistent gap cal culation for a bar-shaped
superconductor. In about 80 iterations, the
gap valuesstabilize. In Fig. 4, we show the
self-consistent gap values plotted against
L, for a bar-shaped superconductor. It can
be seen that there are oscill ations of the gap
whose amplitudes decreaseas L, increases.
These oscillations can be attributed to the
discreteness of the transverse wave
vectors. As L, increases, the transverse
wave vector approaches the continuous
regime, which can be gauged from the gap
becoming closer to its bulk value obtained
by integrating, instead of summing over, the
transverse wave vectors. Another
interesting thing which can be seen in the
figureisthe suppression of superconductivity
for narrower transverse widths. We notice
that asthe temperature increases, the onset
of the suppression of the superconductivity
occurs at higher valuesof L, .

For the SNS system, our initial gap profile
is the step-like gap shown in Fig. 1. By
following theagorithm outlined inthetheory,
we obtain the results shown in Fig. 5. In
Fig. 5a, the gap is depressed near the
interface. This occurs because of the
proximity of the superconductor to the
normal metal. This phenomenon is known
as the “proximity effect”. In Fig. b, we
show the pair amplitude or density of Cooper
pairs. It is evident that even in the normal
metal, Cooper pairsstill exist. Thisisanother
manifestation of the proximity effect.
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