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Abstract—Landsat images, being optically captured, contain one of the most fundamental remote sensing issues-- cloud 

and haze contamination. Various algorithms have been developed through the years to correct haze contamination and 

maximize the use of archived Landsat images since its launch in 1972. One such algorithm is the Haze Optimized 

Transform (HOT). HOT identifies spatially varying haze thickness on the premise that clear sky conditions can be 

characterized from the regression of highly correlated blue and red bands; and features diverging from this relation 

indicate thickness of haze using their orthogonal distance (HOT values) from clear sky function. A modified Dark Object 

Subtraction is then performed based on histogram matching per HOT value versus the clear sky case. 
 

This paper presents modifications in applying the HOT algorithm considering the effects of increased radiometric 

resolution and new coastal blue band in Landsat 8 were tested on two separate images with different dates of acquisition 

from a test site in the Davao Oriental province of southern Philippines, which was selected due to its prevalent cloud cover 

condition throughout the year. The effects of the increased radiometric resolution and new coastal blue band in Landsat 8 

were tested on two separate images with different dates of acquisition. Haze correction using the coastal blue band 

demonstrates noticeable difference in adjustment for certain land cover types. On the other hand, the increase in 

radiometric resolution shows exponential effects to HOT value ranges which translates to finer haze depth estimation but 

at the expense of performance. Moreover, applying the algorithm demonstrates a higher rate of over correction, which is 

then compensated by applying a clear aerosols fraction adjustment. 

 

The corrected images are then further processed to compute Normalized Difference Vegetation Index and Supervised 

Classification to show the effectiveness of the HOT correction algorithm. This study shows that the HOT algorithm with 

the presented modifications can be efficiently and effectively implemented on Landsat 8 images, and obtain the desired 

results. 

    
Keywords— Remote Sensing, Relative Radiometric Correction, Haze Removal, Landsat 8, Haze Optimized Transform 

 

1. INTRODUCTION 

 

1.1 Background of the Study 

 

 The Landsat program, one of the legacy programs in remote sensing, has provided satellite 

imagery with almost worldwide coverage of the earth's surface since 1972 (USGS, 2012). In the last 

decade Landsat images has been available to all users at no cost, this has made it as one of the most used 

satellite imagery for research, development and operational use. The latest iteration, Landsat 8, was 
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launched on Feb. 11, 2013. Landsat 8 images have four visible bands, along with the three heritage 

optical bands for Red, Green, and Blue the new coastal blue band (coastal aerosol) was added for near 

shore applications (USGS, 2012). Another variation of significant interest is Landsat 8 images' 

radiometric resolution of 16-bit unsigned integers (USGS, 2014), provides a higher digital number (DN) 

range of 0 - 65535 which is a great improvement from the its predecessors that have only 0-255 range of 

DN values. Further changes in Landsat 8 include the addition of 9th band, which is described as the 

cirrus band which can be used to identify cirrus clouds.  

 

 Cloud and haze contamination has always been an issue when dealing with remotely sensed 

satellite imagery especially those acquired in the optical region. On satellite images thick clouds 

completely covers the underlying ground features, while other atmospheric contaminants such as haze 

partially covers objects on the surface. Zhang et al. (2002) defines haze as spatially varying, 

semitransparent cloud and/or aerosol layers on an image. Clouds and haze share a similar characteristic, 

in that both increase the radiometric (DN) values of pixels regardless of the occluded feature. This 

distorts the expected response of a given pixel, making spectral analysis difficult, if not impossible. 

While haze only partially covers the underlying pixels it also distorts an image's contrast (Du et al., 

2002) thus image analysis methodologies such as spectral indices e.g. NDVI and image classification 

are largely affected.  

 

 Optical remote sensing images for most applications require clear skies to be useful. Even with 

the increasing number of available satellites and remote sensing missions, it is still a challenge to 

acquire imagery with low cloud contamination. To be able to maximize the use of cloud contaminated 

satellite images various algorithms have been developed for haze identification, and removal or 

correction.  

 

 

1.2 Review of Related Literature 

 

 One of Landsat 8's aims is to continue the worldwide coverage it has started for earth 

observation (USGS, 2012). However, Landsat 8 represents a significant change over its predecessors for 

being the first to utilize a push broom sensor (Knight and Kvaran, 2014) among other changes. In terms 

of spectral response e. g. TOA reflectance a systematic difference between the previous two Landsat 

iterations (Flood, 2014). Such changes in its imaging systems prompt the need for evaluation of spectral 

response based algorithm applicability. 

 

 The ideal case for correcting haze contaminated images is by absolute radiometric correction, 

this requires the complete solution to the radiative transfer problem which requires in situ measurements 

to ascertain the actual atmospheric conditions prevailing at the time of image capture (Du et al., 2002). 

However, in situ measurements require a priori knowledge of image acquisition, if not constant 

measurements of areas of interest; because of this difficult requirement, relative radiometric correction 

is more often employed to adjust for haze contamination. Relative radiometric correction implies the use 

of correction parameters solely based on the relative DN values within an image scene (He et al., 2009). 
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Because of this, this method is more often applied to images taken from curated and archived image 

repositories.    

 

 Some traditional algorithms assume homogeneous haze depth all throughout an image. Most 

notable is the DOS (Dark Object Subtraction) which assumes that, within an image, there exists a dark 

object with theoretically zero DN value that has been raised due to the additive effect of haze 

contamination (Chavez, 1988). Thus, the DN value of that pixel is the estimated effect of haze 

throughout the image. However, haze on an image is seldom homogeneous, and often has spatially 

varying thickness. The crux in removing heterogeneous haze largely depends on the initial step which is 

its identification and characterization. For this case, the DOS concept is modified by succeeding 

algorithms that utilize histogram matching of haze thickness level versus the ideal clear sky case 

(Chavez, 1988; Ricther, 1996, Zhang, 2002; Du, 2002; Li et al., 2014). 

 

 The conventional method in identifying objects in optical satellite imagery leverages the 

different spectral characteristics of image features to differentiate them from one another. Haze and 

thick cloud contamination raises reflectance, and consequently DN values in raw images, due to 

increased scattering of incident path radiance. Aside from high DN values in the optical regions, thick 

clouds are characterized by low temperatures (low DN values) in the thermal region, this characteristic 

makes it ideal to differentiate thick clouds from white objects on an image such as built-up areas, white 

sand, etc. However, thin clouds or haze exhibits the same rise in DN values in the optical region, do not 

always have low temperatures, making haze identification more complicated (Li et al., 2014).  

 

 To leverage spectral characteristics, one common theme in haze identification is the utilization of 

subsequent thresholds on varying band combinations and transformations to isolate clouds (Richter, 

1996; Irish et al., 2006).  On the other hand spatial characteristics have also been utilized in object based 

algorithms for haze identification such as HAWAT which uses wavelet decomposition based approach 

(Du et al., 2002), image segmentation based on thresholds (Zhu and Woodcock, 2012), and localized 

dark object selection to generate Haze Thickness Maps (HTM) (Makarau et al., 2014).  

 

 A number of exhaustive cloud detection and characterization processes have been employed on 

Landsat imagery, most notable of which is the Automated Cloud Cover Assessment (ACCA) (Irish et 

al., 2006) and Function of mask (Fmask)by Zhu and Woodcock (2012). While, ACCA is mainly used to 

generate nominal cloud cover percentages without the cloud mask output, whereas Fmask aims to 

generate a binary cloud mask. However, these algorithms specifically utilize most of Landsat bands 

including optical bands, near infrared, and brightness temperatures, and are tuned to their specific 

spectral responses making them not directly adaptable to other images. 

 

 The optical region specifically the red and blue wavelength bands of satellite imagery are highly 

correlated (Zhang, 2002); and the increase in DN values brought about by cloud contamination 

adversely affects this relationship. In this regard, several algorithms have utilized this premise to 

identify and characterize cloud contamination based on image transformations with bands that highly 

correlate to haze. This was first observed from Richter (1996) when he utilized the haze band from the 
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Tasseled Cap Transformation (TCT) while a subsequent study by Li et al. (2014), suggests that the 2nd 

component of a Principal Component Transformation (PCT) demonstrates the same feat. 

 

 While TCT and PCT transformations were not originally targeted for haze identification, Zhang 

et al. (2002) improves on the TCT to devise the Haze Optimized Transformation (HOT). With HOT 

spatial distributions and haze depth becomes more apparent to allow for better characterization. Guidon 

et al.  (2003) argues further the effectiveness of HOT as tested from several Landsat Imagery and 

comparisons with other haze removal techniques. Moreover, HOT has also been applied to various 

imagery of varying spectral and spatial characteristics; such as high resolution images like IKONOS 

(Dal Moro, 2007), Quickbird, and even on CBERS imagery (Wen et al., 2009). More recently, the HOT 

algorithm has been extended to algorithms characterize imagery shadows (Zhang et al., 2014) as well as 

detailed aerosol characterization (Razali, 2015).  

 

 Of all the available algorithms reviewed, HOT seems to provide a quick and robust methodology 

for both characterization and haze removal for optical images without the need for additional 

information making it a via procedure even for RGB images. This paper will therefore focus on the 

application of HOT procedure in removing haze in Landsat 8 imagery. 

 

 

1.3 Objectives 

 

 The main objective of this study is to apply the aforementioned Haze Optimized Transform for 

Landsat 8 imagery and determine its effectiveness in detecting and removing cloud and haze from the 

images. Since the main goal of haze removal is to correct images that are otherwise useless, the results 

can be gauged by subsequent processing of those imagery. Spectral analyses, namely, image 

classification and Normalized Difference Vegetation Index (NDVI) will be done to demonstrate the 

effectiveness of HOT in cloud detection and removal.  

 

 To reach this main goal the following specific objectives were set forth. First, to determine if 

coastal blue (aerosol) band in Landsat 8 is a viable substitute to the heritage blue band in computing the 

HOT values. Due to the similarity of both bands, it is surmised that coastal blue band may be a suitable 

substitute to the heritage blue band. On the other hand, the lower wavelengths of coastal blue band are 

more affected by scattering due to aerosols in the atmosphere, it is hypothesized that Band 1 of Landsat 

8 may result in more sensitive HOT image.  Second, to determine the effect of increased radiometric 

resolution to the HOT algorithm; and to develop a better histogram matching for correction function in 

lieu of increased dynamic range of HOT values. It is surmised that an increase in DN values would 

result in finer haze depth estimation; hence, better haze correction.  
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2. METHODOLOGY 

 

2.1 Test Site 

 

 The study site for this study is located in Davao oriental Province of southern Philippines, 

covering the municipalities of Cateel, Bagangga and Boston, shown in Figure 1. The area is located on 

the eastern seaboard of the island of Mindanao, facing the Pacific Ocean, and known to be susceptible to 

typhoons and Inter-Tropical Convergence Zones (ITCZ). The test site is of interest to hydrologic 

studies, specifically flooding caused by extreme rainfall events. The prevalent land cover and 

topography consists of mountain ranges with mostly primary forests, to flat lands with agricultural lands 

and coastal areas with a small number of rural settlements. The test area is found between the longitudes 

from 126' 8” 7.14º to 126' 41” 16.94º, and latitudes from 7' 26” 22.10º to 7' 55” 56.55º and is covered by 

a single Landsat scene. 

 

   
Figure 1. The Test Site: Landsat Imagery of Davao Oriental 

 

 

2.2 Materials 

 

 Archived 16-bit GeoTIFF format Landsat 8 images were downloaded from Earth Explorer 

interface of USGS (http://earthexplorer.usgs.gov/) and used to test the algorithm. Like its predecessors 

capture images over a 185 km swath and gather data at an altitude of 705 km. The study area is covered 

by the Landsat image in the World Reference System (WRS- 2) path 111, rows 55. Landsat 8 is 

composed of Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) with spectral bands 

shown in Table 2. For this study images utilized for haze removal and subsequent processes were 

limited to OLI bands 1 – 5 of images from October 2, 2014, and January 22, 2015 (false color image 

shown in  Figure 1),  dates were utilized in this study, all of which are covered by thick clouds and haze 

to test the proposed procedure.  

 

 

 

 

http://earthexplorer.usgs.gov/
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Table 2. Landsat 8 (OLI) Spectral Bands 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 HOT has been implemented by various Remote Sensing softwares such as Panchroma 

(http://www.pancroma.com) and ENVI/IDL extension (Hu et al., 2009). However, for his study the 

modifications to the algorithm were implement using python 2.7 scripts using GDAL and Numpy 

libraries for being free and open source, and readily available. The implementation was wrapped in a 

QGIS python plug-in for ease of use, which is currently under development and called Dehaze Image 

(shown in Figure 2), for more convenient processing. The processing was performed using a Ubuntu 

14.10 computer running on 8Gb RAM and Intel® Core™ i5-2450M CPU @ 2.50GHz × 4  processor. 

 

 
Figure 2. DeHaze Image, QGIS plug-in 

 

 

 

http://www.pancroma.com/Haze-Optimized-Transform.html
http://www.pancroma.com/Haze-Optimized-Transform.html
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2.3 Haze Optimized Transform (Theoretical Framework) 

 

 Zang et. al (2002) point out that at clear sky conditions there is high correlation between Red and 

Blue DN band values for most land cover types. They argued that a clear sky line (CL) based on these 

two bands can be regressed from a set of pixels selected within the scene, and hazy pixels would deviate 

from this line. The transformation determines the orthogonal distance from the computed clear sky line. 

This displacement from the clear sky line can be computed using Equation (1), and from here on be 

referred to as HOT values. HOT values then relatively indicates the thickness of haze, with higher HOT 

values indicating larger haze depth. 

 

 

    cosDN_RedsinDN_BlueHOT     (1) 

 

where DN_Blue and DN_Red, denote the digital numbers for the respective bands, and Θ the slope of 

the clear sky line.  

 HOT haze removal algorithm can then be thought of as a supervised algorithm in the sense that 

clear sky pixels are selected to generate the regression of the clear sky line previously mentioned. Since 

this selection procedure can be subjective, an understanding of clear sky pixels is required, which in 

some cases requires a priori knowledge of the land cover class present, this has been cited as a limitation 

of HOT (Makarau et al., 2014). To reduce subjectivity, analysis of correlation such as Pearson's r 

between the red and blue bands of selected clear sky pixels can be performed. Selection with the highest 

Pearson's r will then be used to perform the regression of clear sky line. On the other hand, He et al. 

(2009) suggest adopting the whole image scene when a clear sky region is not present.  

 

 As pointed out by Zhang et al. (2003) the algorithm does not fare well for certain land cover 

types, such as built-up, bare soil, and silted water. They noted that underlying silted water and built-up 

areas tends to have elevated HOT values, whereas bare soils have slightly lower HOT values. It can be 

surmised that HOT performs best for vegetated land cover types. To address this concern, a 

modification to the original algorithm was developed where bad faring land cover types are masked 

before the actual HOT algorithm is implemented; after which an additional step to correct the masked 

pixels is performed (Dal Moro, 2007). Another modification to the HOT process, which they call 

advanced HOT or AHOT varies the computation by adjusting HOT values bias per land cover class (He 

et al., 2009). 

  

    a- cosDN_Red-sinDN_BlueHOT                                  (2) 

where DN_Blue and DN_Red, denote the digital numbers for the respective bands, Θ the slope of the 

clear sky line, and a is the intercept of the clear sky line. 
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 Equation (2) indicates the modified HOT calculations for the AHOT process. The intercept ofthe 

clear sky line is utilized aside from the slope angle. The intercept was added to the calculations to shift 

the HOT values of clear sky pixels (mainly vegetated and asphalt land cover types) to almost zero (He et 

al., 2009). 

 

 Based on the original algorithm adjustment values were computed by matching the lowest DN 

value for a HOT value histogram to the lowest value in the clear sky histogram. The difference (which 

serves as the correction) is to be subtracted from the original DN value of the image (Zhang, 2002). 

Alternatives to this have been presented based on the premise that lower bound values are not stable, 

instead other histogram statistics were explored such as mean, percentile statistics (Dal Moro, 2007), 

and VCP (Virtual Cloud Point) or the mean of minimum and maximum regressed lines (He, 2009).  

 

 Zhang et al. (2002) point out that a linear function is a 'good first estimate' of the correction 

although no further possible correction functions were discussed. Further review of literature on this 

aspect has turned futile, thus from this it can be presumed that linear regression of the function may still 

be the best estimator. 

 

 As observed, even non-hazy pixels could possibly have significant HOT values. The application 

of the correction then should be limited to that of the hazy pixels. While the boundary of hazy and non-

hazy is not exactly defined using the HOT algorithm, non-application of DOS on “clear sky pixels” 

results in uneven image after correction. On the other hand, non-removal of clear sky pixels results in 

overcorrection, although all HOT values resulted in a left shift in the dehazed histogram. As observed 

from data presented by from literature (Zhang, 2002; Dal Moro, 2007; He et al., 2009) dehazed 

histogram is often slightly shifted to the left, or moved to lower values. Makarau et al, (2014) also cites 

over correction in the intermediate steps of their HTM algorithm, the overcorrection is pointed at 

removal of clear sky aerosols. They surmise that even clear sky imagery have aerosol layer and the 

registered correction over compensates and removes this layer as well. It is further cited that the clear 

scene fraction is negligible in lower radiometric resolutions it is more apparent 16 bit images such as 

Landsat 8. It is supposed that HOT values computed for CL pixels is can be attributed to the same “clear 

sky aerosols fraction”. 

 

 

2.4 Methods 

 

 In the following section, details of the haze removal strategy is presented and discussed.  

 

 Subsets of the Landsat 8 scenes described above were prepared for HOT processing.  To 

investigate the effect of radiometric resolution on the HOT images, varying radiometric resolution 

images were generated from top of the atmosphere reflectances images. This was performed by 

multiplying the TOA reflectance images by integer values: 100, 255, 1000, 10000 and 65535 

respectively. Using a common set of clear sky pixels, analysis of HOT values generated from the 
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original heritage blue vs red bands, and the HOT calculation using new coastal blue vs red bands were 

performed by image difference of the computed dehazed imagery. The at each run of varying 

radiometric resolution and blue band were performed using the general methodology outline as follows. 

 
Figure 3. HOT Methodology 

 

 Land Cover Masking – Similar to Dal Moro's HOT implementation where land cover pixels with 

notorious HOT responses are initially filtered out (Dal Moro, 2007). In this particular study, water pixels 

were masked out due to the erroneous HOT values and due to the relative size of water pixels in the 

image scene. Significant drift in the correction function is expected due to the large number of elevated 

HOT values from silted water, hence they were target for exclusion. On the other hand, there are almost 

insignificant built-up areas in the study site which were not included in the masking.  

 

 Clear Sky Selection – Selection of clear sky pixel were done by rectangular bounding boxes as 

assisted by software used.  Image enhancements and stretching were performed to visually isolate non-

hazy areas. Instead of measuring Pearson's R to vet clear sky pixels, a number of iterations were 

performed until HOT images with sufficient contrast is achieved. This is performed by investigating 

HOT value ranges from the results after each iteration and histogram stretching. The a clear sky area per 

image was selected to be consistent for the different iterations. 

 

 Clear Sky Line Regression – from the selected pixels linear regression of the blue and red bands 

are used to calculate the clear sky line, more specifically the clear sky line slope angle (Θ in Formula 1). 

Scatter plots of the blue and red band combinations suggests a linear relationship between each. The 

coastal blue band is tested and compared with the heritage blue band. Initial comparison of correlation 

and regressed slope angle is taken to ascertain difference from heritage blue band.  
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 HOT Image Computation –  A HOT image is then generated by applying Formula 1. Instead of 

using the clear sky line intercept (as indicated by Formula 2). However, the HOT values were shifted 

using the minimum HOT value in the image. This was done to optimize the process in reducing the 

HOT values to be histogram matched. HOT images using both blue bands were compared and 

contrasted. 

 

 HOT – CS Histogram Statistics Matching – matching statistics taken form histograms of per 

HOT value for each optical band is compared with its corresponding clear sky case. The selection of 

matching statistic is viewed as a parameter for the algorithm execution, this is in part due to the 

inconclusive analysis on best performing matching statistic. The following matching statistics were 

explored for implementation: 1) Minimum value or histogram lower bound, 2) Mean values, 3) 

Percentile which indicates the relative position in percentage of the cumulative counts of values. 

Percentile is the most flexible since using 50th percentile indicates the median and 100th percentile 

indicates the maximum. 

 

 In terms of computational complexity, the analysis of the histogram matching would indicate 

that the minimum value is the least complex which requires on average only less than a single pass of all 

values to perform matching. Followed by mean statistic which requires exactly one pass to perform the 

matching this indicates a complexity of N. On the other hand, percentile statistics requires more than 

one pass. The straight forward algorithms in computing a samples percentile produces a complexity of 

N^2, better implementations suggest an NlogN complexity. This indicates an almost negligible effect in 

actual computational times.  

 

(a) minimum (b) mean 

(c) maximum (d) 5th percentile 

Figure 4. Scatter plots of histogram matching. X-axis: HOT values, Y-axis: Correction values (10000 

DN image) 
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  Figure 4, illustrates scatter plots from the various matching statistics of the January 2015 

image. Surprisingly, the minimum value demonstrates the lowest variability among the tested statistics. 

In the same manner lower value percentile like the 5th percentile indicated up to the median shows 

similar scatter plots than that of the mean statistic. Moreover, the maximum statistics the least similarity 

with the other plots. However, while the minimum function represent less variability between local 

points, it shows relatively larger discrepancy with best fit lines due to well defined inflections at the 400 

– 600 DN value range where most of the pixels are concentrated. For consistency in presentation the 5th 

percentile solution will be shown for subsequent presented results. 

 

 Correction Function Regression – The difference in histogram matches are linearly regressed to 

determine a correction function with HOT value as the required parameter. The assertions of linear 

correction function were tested for the same imagery. Regardless of the radiometric resolution similar 

graphs were computed, hence only 10000 DN image was shown for clarity. As shown in Figure 4, lower 

HOT values show a decreasing trend regardless of the histogram matching used; and at some point it 

will up tick to an increasing trend. Overall the DN values indicate an increasing trend when a trend line 

is used, further analysis of the samples indicates that most of the haze samples are concentrated near the 

inflection point from Figure 8, at around 400 - 500 DN value range. 

 

 Application of Correction Function – The computed function is applied using the HOT image, 

subtracting the results to correct the additive effects of haze. While the graph of the HOT vs DN values 

suggests that piecewise or even a parabolic correction function may be a better fit due to an inflection 

point, majority of the hazy pixels fall within the initial up tick, making the linear assumption valid. 

 

Hazy Green Band  Dehazed without 

histogram shifting 

 
Dehazed with histogram 

shifting 

Figure 5. Histogram Shifting 

 

 Histogram Shifting – The resulting histogram is compensated for the over correction, where the 

values are shifted based on the clear sky histogram. Figure 5 illustrate the concerns with overcorrection 

of DN values. Compensation based on the concept of clear sky aerosol function (Makarau et al., 2014) is 

used to perform the histogram shifting. For simplicity the histogram shift was derived from the mean 

value matching of the selected clear sky pixels and the intermediate dehazed pixels. 
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3. RESULTS AND DISCUSSION 

 

3.1 Haze Removal Results 

 

 After variations to algorithm parameters such as radiometric resolution, blue band, histogram 

matching statistics, and correction function were performed. This section details the most viable results 

obtained and inferences on the parameter utilized are made. Figure 6 shows haze removal of the 16-bit 

January 2015 Landsat 8 image using heritage blue band and linear regression using 5th percentile 

histogram matching. 

 

 

 
Figure 6. Haze Removal Results 

 

 It is observed from the per band images, correction function, and RGB true color image that 

Band 1 or the blue band was corrected the most, while decreasing correction in both the subsequent 

bands this is consistent with literature indicating lower wavelength bands having higher susceptibility to 

haze. A slight color distortion of RGB image is observed, while the individual band correction maybe 

deemed effective the process may have affected the relative responses between band histograms, this 

surmised as caused by the simple histogram shifts performed where only the mean. 

 

 

3.2 Radiometric Effects 

 

 Corrections of images of varying radiometric resolution are shown in Figure 7. Due to the 

transformation procedure the number of bins of resulting HOT images or as supposed the discreet levels 

of haze thickness were inferred. Figure 8 shows a direct exponential relationship with the original 

resolution to that of the resulting HOT levels. Reduced number of discreet levels implies over or under 
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corrections of pixels broadly grouped by the procedure resulting in blocky haze corrections. As 

observed from the processed images 1000 bin images already show similar refined detail to that of the 

65535 bin imagery. 

 

100 bins 

 

255 bins 1000 bins 10000 bins 

Figure 7. Radiometric Resolution Effects (Green Band) 

 

 

 
Figure 8. Resulting HOT Image bins and Algorithm Performance versus raw image bins 

 

 

 As expected the haze depth variation is better captured by higher radiometric resolutions. 

Furthermore, the exponential increase in the resulting HOT levels indicates better effectiveness of the 

algorithm. However, the algorithm performance is directly related to the number of bins due to the 

nature of histogram matching procedure performed. This suggests that increasing the radiometric 

resolution of images increases effectiveness of the algorithm in terms of characterizing haze effects. 

While Landsat 8 images can be processed at  default radiometric resolution, the effectiveness is not 

much greater than that of lower scaled image values. 

 

 

3.2 Coastal Blue vs. Heritage Blue 

 

 Using the the native Landsat 8 images clipped and masked to include OLI bands were used to 

test coastal blue HOT images. The correlation (Pearson's r) of red and blue band compared with red and 

coastal blue band shows similarly high correlation (see Table 3). The heritage blue band exhibits slightly 

higher correlation than that of the coastal blue band. Linear regression of the given indicates that there is 

a significant difference in the slope angle computed. This suggests that HOT images from using coastal 

blue would have significantly change as well. 
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Table 3. Comparison Pearson's R and Clear Sky Line Slope Angle 

 coastal heritage  

Pearson's R 0.98418 0.98900 Jan 2015 

0.99519 0.99683 Nov 2014 

Slope angle 

(degrees) 

54.40537 53.69029 Jan 2015 

49.68670 47.84904 Nov 2014 

 

 

 HOT images were computed for both coastal and heritage blues. Visual inspection of the images 

suggests higher contrast for heritage blue HOT image. It is also worth pointing out that land cover 

classes exhibiting elevated HOT values such as silted water and built-up areas are less elevated in 

coastal blue HOT images. In terms of range of values, no significant conclusions can be made, on 

average the Jan 2015 image had a 38.45% decrease in HOT value range from using coastal blue band, 

while a 0.55% increase in HOT value ranges for the Nov. 2015 image. 

 

HOT image (coastal blue) 

 

HOT image (heritage blue) 

 

RBG image (January 2015) 

HOT image (coastal blue) HOT image (heritage blue) RBG image (November 2014) 

Figure 9. Comparison of HOT images generated 
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Figure 10. Reflectance Difference (DH image coastal blue – DH image heritage) 

 

 

 The haze correction procedure was continued without masking in land water features for both 

HOT images, the resulting dehazed imagery was then calibrated to TOA reflectances. A difference 

image, where heritage blue HOT dehazed image was subtracted from coastal blue HOT dehazed image, 

was computed from the reflectance images can be seen in Figure 9. Most pixels agree or have similar 

corrected values, surprisingly most of these pixels are pixels with which are thought of as hazy pixels as 

observed from the HOT image.  

 

 Moreover, the difference in the images are noticeable to the extent that land cover features can 

be identified such as, water pixels, clouds, and fallow or bare soil areas. This suggests that coastal blue 

band HOT has significant change in its response that are dependent on these land cover types. The 

largest positive difference were observed on clouds and silted rivers, the land cover features that exhibit 

elevated values for the original HOT. This indicates greater correction for these land cover types 

happens in the heritage blue band, conversely the coastal HOT have lesser response to higher haze 

levels. Utilizing the coastal blue band therefore reduces over correction at the least for water land cover. 

However due to limited built-up pixels in the image scene it's effect was not investigated. In all reduced 

correction (negative values in Figure 9) was observed for most other land cover types, based on the 

slightly skewed histogram. 
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3.4 Post Processing  

 

Reference Image NDVI before HOT Correction 

 

Land Cover Classification after 

HOT Correction 

NDVI after HOT Correction 

 

Figure 11. Post HOT Correction Image Analysis 

 

 

 The end goal haze removal is to prepare the haze filled images for further processing. To gauge 

the HOT methodology in haze removal effectiveness subsequent NDVI and image classification was 

performed. From the image it can be observed that the process was able to correct most thin clouds 

existing in the image. While thick cloud fringes were corrected the most of cloud remains intact. For 

most objects affected by haze, greatly improved NDVI and classification results was observed, where 

hazy pixels originally indicating mostly low NDVI values now spatially varies according to the 

underlying land cover. 

 

 

4. CONCLUSION AND RECOMMENDATIONS 

 

The study shows the applicability of HOT thin cloud removal algorithm on Landsat 8 images. 

The following conclusion are made based on the performed methods: 

 

 Analysis of matching statistic and correction function are inconclusive and in some cases 

inconsistent with literature results. The best results from were obtained from an iteration of the process 

with varying parameter inputs (see Fig. 4). In general, 5th percentile with linear correction function was 

used for most of the processing performed. The application of histogram shifting compensates for the 

nominal DN values of corrected pixels; however, this does not address apparent color distortion. 

 



85 

 

 
Copyright 2015 | Philippine Engineering Journal  Phil. Eng’g J. 2015; 36(2): 69-86 

M.E. TUPAS 

 The default radiometric resolution of Landsat 8 results in cumbersome processing of HOT 

images due to the histogram matching step of the algorithm. As observed increasing radiometric 

resolution increases the HOT levels computed, this result is finer correction which is desired. However, 

corrected images using the natural 16-bit resolution displays similar results to that of images rescaled to 

10000 bin resolution, this suggests algorithm performance can be optimized by rescaling Landsat 8 

radiometric resolution and attain similar results. 

 

 Coastal blue band of Landsat 8 shows significant correlation to the red band to merit 

consideration for HOT application. It was shown that coastal blue band of Landsat 8 imagery is a viable 

substitute to heritage blue band for HOT calculations coastal blue band of Landsat 8 shows significant 

correlation to the red band to merit consideration for HOT application, this results in similar images 

with slight variations that is observed to be land cover dependent. It was also observed that it performs 

better for water land cover for the images utilized for this study. In general, there is a slight increase in 

haze correction when coastal blue was used. 

 

 The corrected images are then used for calculation of NDVI and Image classification to show 

HOT correction algorithms effectiveness. In all, it can be concluded that the HOT algorithm can be 

efficiently and effectively implemented on Landsat 8 images with the demonstrated modifications.  
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