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ABSTRACT

Median problems are combinatorial problems that associate the allocation cost of demand points to
the selection of different location sites for a number of facilities that satisfy the total demand. This
study focuses on the P − k median problem of minimizing the total weighted distance between n
demand points and these location sites when the number of existing facilities, k, on a given network
is increased to P . Initial combinations of possible locations for the additional P − k facilities are
iteratively improved using a proposed modified genetic algorithm. The algorithm implements a new
opportunity cost-based child reproduction procedure for the generation of better solutions with biased
parent selection probabilities. This creates the best possible offspring without affecting the locations
of existing facilities while current information from having the existing k facilities simplifies the choice
of locations for increasing the number of facilities from k to P . The generated combinations of facility
locations are tested on the Galvao-100 median set deriving 30 P − k median problems from the
Lagrangian relaxation solutions. Average percentage difference from the optimal solution found at
0.52% outperforms the neighborhood search improvement made on the myopic algorithm at higher
values of P − k .
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1. INTRODUCTION

The P -median problem is the cost minimization problem of serving the demands of a network
by finding the location of P facilities that will serve these demands. Hakimi [13] was among
the first to present the formulation of the median problem and used a simple enumeration
procedure for solving the problem [22].

The solution set of the P -median problem consists of combinations of possible locations of
the P facilities called medians. The closest among the facilities to each of the demand points is
assigned to serve the corresponding demand. A solution provides the locations of these facilities
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and the demand points served by each facility. While the P -median problem can be solved in
polynomial time on a tree network, the problem is NP-hard on a general graph ([17] and [11]).

Facility location literature has provided solutions to the P -median problem using several
heuristic algorithms with varying performance with respect to finding the optimal solution.
M. Daskin [4] discusses three classes of heuristic algorithms: the myopic algorithm, exchange
heuristic and neighborhood search algorithm. These algorithms estimate at their best a 0.172%
average difference and can go as far as 4.208% from the optimal solution given by the
Lagrangian relaxation approach [2]. When coupled with any of the three heuristic algorithms,
the Lagrangian approach has been considered superior than many proposed algorithms with
respect to the quality of solution obtained though it requires the most computational time [4].

Review of literature also shows that there has not been much attention placed on possible
existing facilities in the P -median problem. This study, however, takes into account the number
of existing facilities, k, on a given network that is different from the P -median problem and will
be referred to as the P−k median problem. The solution to this combinatorial median problem
of finding P − k more facility locations is determined from the minimum cost associated with
the weighted distances of the demand points from the candidate facility locations as well as
the existing facilities. The computational complexity of the P -median problem extends to the
P−k median problem where the number of combinations of facility locations is also polynomial
in n for constant values of P and k where nis the number of demand points ([4] and [20])

Ideal for the complexity of the P -median and the P−k median problems is the use of genetic
algorithms where the natural selection of solutions under controlled and well understood
conditions is developed [15]. The concept of genetic algorithms came from the Darwinian
theory of evolution and natural selection. Its two primary processes, namely, natural selection
and sexual reproduction, determine the survival and reproduction of better individuals or
solutions. Mixing and recombination among the genes of their offspring generate a set of
individuals from a very large and complex set of candidate solutions randomly [12].

In recent related studies on the application of genetic algorithm for the solution to the
P -median problem, a solution represented as a string of n binary variables is checked for
feasibility using a compatibility-based genetic algorithm [7]. The algorithm verifies that exactly
a number P of these binary variables representing the locations of the medians (variable value
equal to one) are found in the chromosome of the generated offspring upon combination of the
parents’ strings. Combined parents’ strings having more or less than the required P facility
locations are considered infeasible. A child is then randomly chosen from among the feasible
solutions. Similar to earlier applications, biased parent selection probabilities were used giving
higher chances of selection to better fit individuals. In other related studies, a set of P indices
corresponding to P candidate locations is used to represent a solution instead of using a string
of n binary variables. Each index is a number between 1 to n representing one of the P chosen
candidate locations of the solution. The genes of the parents are merged to a maximum of 2P
indices and reduced to only P locations using a greedy selection algorithm [1] or a merge-drop
operator [3]. These studies assumed to restriction on the number of demand points that a
facility can satisfy (noncapacitated) and no existing facilities.

In the use of genetic algorithm for solving the P − k median problem, the reduction of a set
of 2 ∗ (P − k) indices to P − k additional facility locations forming a child or solution can be
done by applying the concept of opportunity costs.

Consider a network with only k existing facilities serving total demand. The minimum cost
in serving a unit demand of a node is equal to the shortest distance of the node from among
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the k existing facilities. A node’s demand must be satisfied by the existing facility closest to
the node. The weighted distance in satisfying this demand is the product of the demand and
the distance of the closest existing facility to the node. A current assignment of the nodes
whose demands are satisfied by each existing facility with this corresponding minimum cost is
available if not easily obtainable since the facility locations are known.

The addition of P − k more facilities to the same network creates increased chances of
finding a serving facility within a shorter distance from a demand node than when there are
fewer facilities. The distance of a node from the nearest existing facility, for example, may be
greater compared to the distance of the same node from some of the candidate locations. The
distances of these candidate locations become relevant in the computation of new costs as they
can reduce the current minimum cost when they are made to satisfy the demands of the nodes
instead of an existing facility.

In increasing the number of facilities, the best opportunity to decrease the cost associated
in satisfying the demand of a specific node is by placing a facility at that same node since the
distance of the node from itself is at its minimum of zero. The corresponding reduction in cost
is equal to the weighted distance of the node from the closest existing facility. The choice of a
single facility location to be added to a network with already k existing facilities (P = k + 1),
therefore, is the node having the greatest weighted distance from its closest existing facility.
Choosing any other candidate foregoes the best opportunity of minimizing cost. The savings
lost from foregoing this best opportunity called opportunity costs.

The choice of P − k facility locations, however, from among several candidates cannot be
evaluated solely from a candidate’s capacity to reduce its own weighted distance to zero. The
same candidate may also be the closest location for a facility to satisfy the demand of another
node. In choosing this candidate, the weighted distance associated in satisfying the demand of
the other node is also decreased. The net savings realized in placing a facility at this candidate
location is the sum of the reductions in weighted distances associated in satisfying the demands
of all the nodes for which the candidate is the closest location for a facility to these nodes. This
net savings become the opportunity cost incurred in not placing a facility at that candidate
location.

This study proposes that the solutions to the P − k median problem be 1. generated as
combinations of P −k location sites from the n−k candidate locations using genetic algorithm
due to the combinatorial complexity of the discrete solution set; and 2. the generation of a
child solution including P − k indices be the result of an evaluation of the candidate facility
locations based on their combined realized savings in satisfying the demand of n nodes in the
form of opportunity costs, or the cost of the best rejected of foregone opportunity [8].

This study applies the proposed opportunity cost-based modified genetic algorithm to
the non-capacitated P − k median problem and is organized as follows: Section 2 presents
the integer programming formulation of the P -median problem and the development in the
approximations used for its solution. Section 3 introduces the proposed opportunity cost-based
genetic algorithm. Section 4 reports some computational results. Lastly, conclusions are given
in Section 5 .
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2. THE P -MEDIAN PROBLEM

2.1. The Zero-One P-median Problem formulation

The P -median problem requires the cost minimization in serving the demands of a network by
finding the location of P facilities. In this class of facility location problems, “the cost (benefit)
associated in satisfying the demand of a node from a facility increases (decreases) gradually
with the distance between the demand node and the nearest facility,” Daskin [4]. However,
other facility location problems such as covering and center problems assume that a demand
node only receives complete benefits from a facility if it is within a certain coverage distance.

From the integer programming formulation proposed by Revelle and Swain [21], the following
inputs and decision variables were used by M. Daskin and are adapted as:

The inputs and indices are

i = index of demand nodes ranging from 1 to n

j = index of candidate locations ranging from 1 to n

hi = demand at node i

dij = distance between demand node i and candidate site j

P = number of facilities to locate

The decision variables are represented as

xj =

{
1, if a facility is to be located at candidate site j

0, if not

yj =

{
1, if demand at node i is served by a facility at node j

0, if not

In formulating the objective function, the total cost of serving all the demand points is to
be minimized. The cost associated if a demand point i is served by facility j is given by the
product of the demand at point or node i and the distance of node i from facility j. To minimize
cost, the facility j closest to the demand point i must serve the demand of i.

In 0-1 model form,

minimize z =
n∑

i=1

n∑
j=1

hidijyij (1a)

Subject to:
n∑

j=1

yij = 1 ∀ I (1b)

n∑
j=1

xj = P (1c)

yij − xj ≤ 0 ∀ i, j (1d)

xj = 0, 1 ∀ i, j (1e)

yij = 0, 1 ∀ i, j (1f)
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The evaluation function is the cost function, z, the total demand-weighted distance between
each of the demand nodes and the nearest facility to each node. The first set of equality
constraints is a guarantee that exactly one facility will be able to serve the demand of each
node. The second set of equation constraints is a system constraint pertaining to the total
number of facilities required to serve the total demand of the network. The third set of
inequality constraints eliminates the allocation of demands at node i from source j if a facility
at location j is nonexistent. The last two sets of constraints are standard binary constraints
for the decision variables.

[14] has shown that for the P -median problem at least one optimal solution can be found
in locating each facility on the network’s demand nodes. For n demand nodes and no existing
facilities, each node is a candidate location for placing a facility or all demand points are
potential medians. This makes the number of xj variables equal to n. From a weighted demand-
distance matrix, there is a number of n x n yij variables. All in all, these as binary variables,
xi’s and yij’s, has a total of n + n2 for the P -median problem.

2.2. Solution of the P -median Problem Using Heuristic Algorithms

The three classes of heuristic algorithms presented by Daskin [4] for the solution of the P
median problem are the myopic algorithm, neighborhood search and exchange algorithms.

The myopic algorithm is a construction algorithm. It builds a solution from scratch and
increases the number of facilities by one every time the algorithm is applied. The myopic
algorithm finds the location of the P th facility that minimizes cost Daskin [4] given that there
are already P − 1 facilities that either exist or whose locations are predetermined from previous
applications of the algorithm. The P − 1 predetermined locations can no longer be changed
when finding the location of the P th facility.

For a 1-median problem (P = 1), the solution is found by evaluating the cost function by
placing the facility at every candidate location j setting xj = 1 to find zj . The location with
the minimum cost zj , is the solution to the 1-median problem. This location becomes the
location of the first facility in the 2nd median problem (P = 2) with the location of the 2nd

facility unknown. The remaining n-1 candidates are independently evaluated for the second
location with the facility closer to node i between the first facility and the candidate satisfying
the demand of the node. The candidate providing the least cost determines the second facility
location. These two locations, however, can no longer be changed in finding other myopic
medians, (P > 2).

In general, consider XP−1 to be the set of the known locations of the P − 1 facilities. The
location of the P th facility can be found by selecting the node j that minimizes the sum of
weighted distances

z = Σihid (i, j UXP−1) (2)

where

d(i, jUXp−1) = the shortest distance of the demand node i from the closest facility among
the set jUXp−1,

jUXp−1 = the union of the given set of existing locations Xp−1 and the location of
the candidate facility j
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It can be seen that by holding the previous k, k+1, . . . , P −1 facility locations fixed as the
known elements of the set XP−1 each time a single facility location candidate is selected, no
combination among the remaining n−P +1 candidate locations is considered in any solution.
This greatly affects local optimality of the solution of large networks. This results in finding
only the best location for the P th facility given the locations of P−1 facilities. Daskin [4] shows
that the myopic algorithm approximation does not always yield the global optimal solution
if there is more than one facility to be added. However, it is useful as an initial solution to
the Lagrangian relaxation algorithm and the two other heuristic algorithms, the neighborhood
search and exchange algorithms.

The neighborhood search and exchange algorithms are considered improvement algorithms
of solutions having already the total number of required facilities, P . These algorithms find
new combinations of P locations to further minimize cost.

The exchange or substitution algorithm improves a given solution by finding the best among
the n−P unselected candidate locations to replace one of the assigned locations in that solution.
The reallocation of demands to determine which locations to exchange is done for each of the P
locations, every time choosing the best replacement from among n−P unselected candidates.

The neighborhood search improvement algorithm [18] considers the effect of changing a
facility’s location on the demand points that are served by that same facility. A starting
solution having P facility locations is divided into P non-overlapping neighborhoods with
each neighborhood composed of all the nodes i whose demands are satisfied by a common
facility j. Each neighborhood is subjected to a first myopic median in an attempt to find
if the current facility provides the minimum weighted distance among the demand nodes
within the neighborhood. This only considers the effect the effect on the members of the
neighborhood but accepts the new location without noting the potential benefit to nodes
outside each neighborhood [4].

2.3. An Optimization-Based Lagrangian Algorithm for the P -median Problem

Two optimization-based approaches in solving the P -median problem involve relaxations of
the zero-one P -median problem. Daskin [4] discusses the relaxation of either constraint (1b)
or constraint (1d) using Lagrangian relaxation. Briefly, the changes in the objective function
as constraint (1b) is relaxed give the Lagrangian function as

Max
λ

Min
X,Y Σ

i
Σ
j

hidijyij + Σ
i

λi

[
1− Σ

j
yij

]
= Σ

i
Σ
j

(hidij − λi) Yij + Σ
i

λi (3)

For the relaxation of constraint (1d) , the Lagrangian function is

Max
λ

Min
X,Y Σ

i
Σ
j

hidijyij + Σ
i

Σ
j

λij (yij − xj)

= Σ
i

Σ
j

(hidij + λij) yij − Σ
j

(
Σ
i

λij

)
Xj (4)

These new functions must be minimized for fixed values of Lagrange multipliers, λij . The
solution to the Lagrangian problem provides a lower bound and the resulting primal feasible
solution using the Lagrangian solution in the P -median objective function provides an upper
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Figure 1. Total Number of Solutions vs P

bound on the P -median problem. The Lagrange multipliers are revised and updated using a
standard subgradient optimization procedure until the prespecified number of iterations has
been reached or when the upper and lower bounds are equal. For a detailed discussion of the
Lagrangian relaxation approach, refer to Daskin [4].

2.4. Computational Complexity and Solution space of the P -median Problem

The total number of solutions of the P -median problem is equal to the number of ways of
choosing P out of n given possible locations where a facility may be placed or

CP
n =

n!
P !(n− P )!

=
(

n

P

)
(5)

where

n = number of nodes of the network (or number of positions where a facility can be placed
P = number of facilities to be located

For a constant value of P , the number in (5) is O(nP ) which is polynomial in n. Without
any existing facility, a network with 10 demand points and 5 required facilities has a total of
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252 solutions. Increasing to 100 and 1000 demand points for a 5 facility-network increases the
total number of solutions to more than 75 million and 8.25029E+12, respectively. In terms
of computational time, evaluating 104 solutions per second will only take 2.5-04 second to
solve the minimum cost by enumeration if there are 10 demand nodes. Increasing to 100 and
1000 nodes, it will take 752.9 seconds and 22,917 hours (2.616 years), respectively, to evaluate
the cost function of every solution. This combinatorial explosion leads to the computational
complexity of the P -median problem and is also depicted in Figure 1 below. Figure 1 also
demonstrates the faster increase in the size of the solution set as n is increased for higher
values of P . Solving by enumeration for any given value of n, the time required to solve any
P -median problem is exponential in n Daskin [4] and is given by the value

Σn
P=1C

P
n = 2n − 1 = O(2n) (6)

Figures 1 and 2 reflect that the total number of solutions increases with the number of
demand points, n, of a given network for the same value of P . For the same value of n
(Figure 2), the number of solutions where P = n/2 is the greatest and therefore the most
difficult to solve by enumeration to find the optimal solution. In fact, the total number of
solutions of the P -median problem is polynomial in n for moderate values of P Daskin [4].
From equation (5), whenever P is increased by one, a factor of (n − P )/(P + 1)is placed for
P < n/2 while a factor of (P + 1)/(n − P ) is removed for P > n/2. With both these factors
positive for the corresponding ranges of P , the number of solutions increase by a factor of
(n − P )/(P + 1) for P < n/2 and decreases by a factor of (P + 1)/(n − P ) for P > n/2
whenever P is increased by 1 (Figure 2).

As the number of demand points, n, increases for constant values of P , there is an increase
in the combinatorial and computational complexity of the P -median problem. This has been
a major concern for the development of heuristics in solving the P -median problem Teitz [23].

The computational complexity of the myopic algorithm relies in the task of adding one
facility at a time. This requires one major comparison of each candidate location to each of
the n demand nodes and one multiplication for each of the weighted demand distances to
find the cost. That will be O(n2) elementary operations per additional facility or O(Pn2)
operations in finding P facilities.

In the exchange algorithm, the number of exchanges which can be made is P × (n − P ).
The number of elementary operations required to determine if an exchange is better than the
current solution involves taking the minimum products of the demands and distances of n
demand nodes, so that the number of basic operations is O(nP (n−P ) considering all possible
exchanges. For values of P almost equal to n/2, this number is O(n3). A network with 5
required facilities and no existing facility, for example, increases in computational complexity
from 475 to 94,525 to 9,945,025 for 10, 100 and 1000 demand nodes, respectively. Enumerating
almost all possible combinations for the exchanges, again illustrates the complexity of the
P -median problem in terms of its combinatorial explosion.

Lastly, the computational complexity of the neighborhood search algorithm can only be
measured per iteration as the number of iteration for the solution to converge to its optimal
is not definite Daskin [4]. The algorithm performs a 1-median (myopic) search on each of
the P smaller non-overlapping neighborhoods per iteration with a total of n demand nodes
for all neighborhoods. From the myopic algorithm, each iteration in the neighborhood search
algorithm has a computational complexity of O(n2).
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Figure 2. Total Number of Solutions vs n

3. THE P − k MEDIAN PROBLEM AND THE PROPOSED GENETIC ALGORITHM
3.1. Genetic Algorithms

Genetic algorithms are based on the natural processes of selection and evolution. They work
well in any search space by randomly generating a set of solutions from a very large and complex
set of candidate solutions. The foundation of such algorithms is the controlled evolution of a
structured population Lorena [16] from a fixed population size.

Changes in the members of the solution set or sample population are made as a result of
the use of an evaluation function. The performance of an individual or solution based on this
function is referred to as the survival ’fitness’ of the individual where the individuals that
perform better than others are assigned greater chances of survival. As a result, better fit
individuals reproduce to create offspring/s that will be part of future generations of solution
sets. Certain traits or characteristics are inherited and may be mutated randomly until a more
suitable solution has been found.

In this study, the evaluation function is the cost function z that minimizes the sum of
weighted distances. While the traits of an individual are the location indices j corresponding
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to xj values equal to one where the P − k facilities must be placed.
Recall that XP−1 from the myopic algorithm is the set of known locations of P − 1

facilities. Since the indices j are locations and xj is binary, then the indices for which
xj = 1 complete a combination of locations for the required P facilities defining an
individual or solution in the proposed genetic algorithm. The solution in the form Xp =
[j1, j2, ..., jk, jk+1, jk+2, ..., jP ] includes the k locations of the existing facilities, j1, j2, ..., jk and
the P − k candidate locations jk + 1, jk + 2, ..., jp. An individual for a 10-median problem, for
example, with 50 nodes and fixed facilities at locations j=12, 27 and 40 may be represented
as X = [12, 27, 40, 7, 19, 20, 33, 38, 43, 47]. This satisfies the required number of facilities of the
P − k median problem in every generated parent and child while the variables remain binary.
Using indices to represent the solution will be much less tedious than enumerating all the n
binary values, xj , per solution especially if n >> P . Other combinations of 10 facility locations
for this example may be found but may not always be chosen as members of any of the different
generations used by the genetic algorithm.

3.2. Solution space of the P − k median Problem

In the P − k median problem, holding k facility locations fixed reduces the xj variables to a
number n− k from the candidate locations while yij still represents the allocation variables of
the demand nodes to n possible medians of fixed and non-fixed facility locations. For a number
k of existing facilities, P − k candidates locations must be chosen to complete a solution while
the total number of candidate locations is n− k. So that the total number of ways of choosing
P − k candidates from among n− k is

S = CP−k
n−k =

(n− k)!
(P − k)!(n− P )!

(7)

where S = total number of solutions
k = number of facilities held fixed
P = total number of facilities to satisfy network demand
n = total number of demand nodes or location sites

Similar to equation (5), the total number of solutions of the P − k median problem is
polynomial in n for constant values of P (7). The same combinatorial explosion is therefore
experienced by the P − k median problem as shown by the plot of S against n in Figure 3.
Given the same number of demand nodes, there are more combinations or solutions at lower
values of k. Moreover, for smaller values of k, there is a relatively faster increase in the number
of solutions as the number of demand nodes increases.

As explained, it is expected in the P − k median problem that for the same number of
existing facilities, k, the total number of solutions is greatest when as P − k is half of n − k
for different values of n (Figure 4).

3.3. Generation of the Initial Members of the Population

The representation of traits in the generation of the members of the initial population of
solutions and population size are important factors to consider in using genetic algorithms.
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Figure 3. Total Number of Solutions, S vs Number of Demand (P=8)

Figure 4. Total Number of Solutions S as P-k increases at k = 10
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Achieving genetic diversity is inversely proportional in relation to the speed of the generation
of initial members of the population. Also, the number of members comprising a population
is dependent on the size of the solution space. Every trait being represented in the initial
population helps prevent premature convergence.

Alp [1] used a formula for the generation of population sizes and initial population given

by D(n, p) = max

{
2,

[
n

100 ·
lnS
d

]}
× d where D is the population size from the P -median

problem of n nodes and P required facilities. d is the smallest integer greater than or equal
to the ratio of n over P corresponding to the minimum number of members representing each
gene in the initial population.

Modifying the equation for the P − k median problem, the population size is

D(n− k, P − k) = max

{
2,

n− k

100
· lnS

d

}
d (8)

and d = (n− k)/(P − k) (9)

The lnS term used provides a slow increase in the value of D as a proportion of S (Figure
5).

Genetic diversity is supported by the uniform distribution of traits across the initial D
members of the population. D is first divided into C = D/d groups of individuals or members
where each group is assigned a group number, c, ranging from 1 to C. Then, all the n − k
candidate locations are uniformly assigned to each group combining P−k indices with the fixed
k locations to create the individuals belonging to each group. The group number corresponds
to the interval between the j indices taken to complete the combination of locations identifying
an individual.

The d members of the first group (c = 1) have P − k indices distributed to each member
according to the sequence j, j+1, j+2, j+3... For c = 2, the distribution of indices is according
to the sequence j, j + 2, j + 4, ... and the pattern goes for other c values. The P − k indices
are combined to the indices of the k existing facilities. If the indices corresponding to existing
facility locations fall into the sequence of a group, they do not disrupt the sequence. Finally,
if the sequence has exhausted all the n− k candidates but has not completed all the members
of the same group, it starts again from the index value following the first index value last used
by the sequence from the candidate locations.

A 52-node network with fixed facilities occupying locations j= 12, 27 and 40 and with P=10
will have for its initial population the members of two groups (C = 2) to be

c = 1

[ 1, 2, 3, 4, 5, 6, 7, 12, 27, 40 ]
[ 8, 9, 10, 11, 12, 13, 14, 15, 27, 40 ]
[ 12, 16, 17, 18, 19, 20, 21, 22, 27, 40 ]
[ 12, 23, 24, 25, 26, 27, 28, 29, 30, 40 ]
[ 12, 27, 31, 32, 33, 34, 35, 36, 37, 40 ]
[ 12, 27, 38, 39, 40, 41, 42, 43, 44, 45 ]
[ 12, 27, 40, 46, 47, 48, 49, 50, 51, 52 ]

c = 2

[ 1, 3, 5, 7, 9, 11, 12, 13, 27, 40 ]
[ 12, 15, 17, 19, 21, 23, 25, 27, 29, 40 ]
[ 12, 27, 31, 33, 35, 37, 39, 40, 41, 43 ]
[ 12, 27, 40, 45, 47, 49, 51, 2, 4, 6 ]
[ 8, 10, 12, 14, 16, 18, 20, 22, 27, 40 ]
[ 12, 24, 26, 27, 28, 30, 32, 34, 36, 40 ]
[ 12, 27, 38, 40, 42, 44, 46, 48, 50, 52 ]

3.4. Parent Selection and the Cost Function

In most applications of the genetic algorithm for the solution to P -median problems, the
selection procedures for finding candidate parents for the generation of new solutions require
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Figure 5. Population Size (D) and Total Number of Solutions (S)

the ranking of the members of the population according to fitness value such as the ranking-
based and the roulette wheel selection by Dvorette [7], among others. In the work of Alp [1],
however, no biased selection mechanism was applied.

The chance or probability of an individual to be selected as parent is directly proportional to
its fitness or evaluation function, z. Higher probability may be associated to a solution having a
lower cost function value or a higher return function value as the case may be. The z values are
computed for all the members of the population. A biased random selection or giving higher
probability to a better value of z is called the roulette wheel type of parent selection. With
the minimization objective function for the P − k median problem, the probability assigned
to each member, XPi, is obtained by first taking the inverse of the objective function zi, z

−1
i .

Then the sum of the inverses of the entire population is computed and the probability for
selection of a member XPi is given by

P [Xi] =
Z−1

i

ΣD
i=l Z

−1
i

(10)

The fitness values of the members of the initial population need not be arranged in ascending
order so as to decrease computational time. Bias on the fitness value is achieved by associating
the obtained probabilities of each solution using equation (10) to the fraction of the range of
the random numbers assigned to each solution. The random numbers are distributed to the
members of the population according to these probabilities. The solution is chosen as parent
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provided that the random number drawn for parent selection falls within the allocated random
numbers of the solution. The best and worst values of z are kept as basis for the behavior of
the current generation and the acceptance of a candidate offspring into the new generation.
The probability distribution changes as cost functions change with new members constituting
the population.

The random number generator used for the selection of parents was taken from minimal
standard generator and is implemented in this piece of code,

double random (double seed)
{
const a = 16087;
const m = 2147483647;
seed = (a * seed) mod m;
return seed/ m;
)

3.5. Child Generation

3.5.1. Merging of Parents’ Traits From the selected parents, a new individual may be formed
through crossover or the swapping of traits between two parents. Single point crossover is the
most commonly used solution where a ‘child’ inherits a portion of each of its parents’ traits.

Each pair of parent solutions in this study generates a maximum of 2 ∗ (P − k) combined
candidate location indices or traits and k fixed locations as a result of the k existing facilities.
This is when there is no duplication in the indices coming from both parents. Should duplication
exist, the child will inherit the duplicated index/indices.

The reproduction of a new individual as well as its survival depends on

1. the fitness of the candidate child to reproduce, in turn, a better fit offspring;
2. retention of the locations of the fixed facilities; and
3. choosing exactly P − k locations among the combined traits of the parents.

3.5.2. Reduction of Location Indices to P The combined unduplicated location indices from
the parents are to be reduced to the number of required indices to fill the remaining P locations
using opportunity costs. This is to generate the best offspring from each parent-pair. With at
most 2∗ (P −k) unduplicated indices from both parents, these form a subset of the total n−k
candidate locations of the given network. The additional P −k facility locations of an offspring
will come from this subset. Further, the pair of parents is chosen so that the parents are not
exactly the same individuals so as to improve the current population.

The cost of having only k facilities will be reduced when a location index j chosen from
the subset of candidates and added to the network is better than any of the existing facilities
with respect to the distance from a demand node i (where i is not necessarily equal to j).
As explained earlier, the decision not to include a candidate j in the P − k facilities when it
is closest to the demand node i among all other candidates as well as the existing facilities
foregoes the best opportunity to lower costs and incurs an opportunity cost. If an existing
facility is the nearest facility to a node i, no opportunity to lower cost is lost in not choosing
any candidate j to satisfy the demand of i or yij = 0 and xj = 0 for all candidates. Lastly,
choosing a candidate j that is not any nearer to another demand node i than any of the

Copyright c© 2004 Philippine Engineering Journal Phil. Engg. J. 2004; 25:61–87



OPPORTUNITY COST-BASED MODIFIED GENETIC ALGORITHM 75

existing facilities only decreases cost by satisfying its own demand. Notice that finding the
best opportunity in satisfying the demand of each node given a solution can be made without
reference to the required number of additional facilities.

In quantifying the capacities or the opportunity foregone by removing a candidate from the
subset of candidate location indices, the following notations are applied:

XP1 = set of location indices of parent 1 including existing facilities
XP2 = set of location indices of parent 2 including existing facilities

X = a subset of location indices fromXP1 ∪XP2

XP = set of location indices of the resulting child or individual having reduced X

into P locations indices
OCj = opportunity cost of candidate location index j

j∗ = the location index with the lowest opportunity cost among candidates;
the location index removed as a candidate from X

d(i,X) = the shortest distance of the demand node i from the closest
facility among the set, X

b(i,X) = the location index j from the set X corresponding to d(i,X)
X̃ = the set of location indices X excluding the location index b(i,X)

d′(i, X̃) = the shortest distance of the demand node i from the closest facility
among the set, X̃

b′(i, X̃) = the location index j from the set X̃

corresponding to d(i, X̃)
X∗ = the reduced subset of location indices X after the removal of j∗

The union of the sets of location indices from the two parents, XP1 ∪ XP2, represents the
existing facility locations and the range of choices for the locations of the P − k facilities for
the resulting child solution. All duplicated location indices are automatically included in the
set of indices of the generated child so that they are no longer evaluated as candidates. The
number of candidate locations from this union is equal to 2∗ (P −k−r) where r is the number
of duplications. The subset of locations indices, X, starts with elements from this union and
is reduced every time a location index is eliminated as a candidate. The reduction criterion
is the candidate location’s opportunity cost and terminates when there are only P remaining
indices in the set X corresponding to the generated child.

If the set X is reduced by an element, the opportunity of incurring the least cost in satisfying
the demand of node i is foregone only if the closest facility to node i, b(i, X), is the one removed
from the set X. Otherwise, the option to have the least cost to satisfy the demand of node i
from the closest facility is available and no opportunity cost is incurred.

Upon the removal of b(i, X), the next best opportunity from the set X, B′(i, X̃, is still
present in the choices for the locations of the P −k facilities of the child. Then the opportunity
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foregone in not choosing the closest facility to node i in satisfying its demand is the additional
cost associated in choosing the next closest facility, b′(i, X̃). This additional cost is equal to
d′(i, X̃)−d(i,X). It is also the opportunity cost of not choosing the location index j = b(i, X)
that best satisfies the demand of node i.

The demand nodes have different location indices b(i,X) corresponding to the best choice of
facility location j for each node. The evaluation of the opportunity cost of candidate location,
j, is therefore considered for all the demand nodes having j as the closest facility to these
nodes or for all i’s satisfying b(i,X) = j. The opportunity cost of not putting a facility at a
location index j is equal to

OCj = Σ
b(i,X)=j

d′(i, X̃)− d(i, X) (11)

The location index, j∗, that has the lowest value of opportunity cost OCj∗ is considered the
worst candidate as a facility location among the given candidates and will no longer be part
of the P − k additional facilities of the resulting child of the given parents XP1 and XP2. And
the removal of a location index as candidate creates the shorter list of indices, X∗.

The computation of opportunity costs after a first location index has been removed becomes
less complicated since the best, b(i, X), and next best, b′(i, X̃), locations of facilities for
satisfying the demand of node i have already been identified. Further, the removal of an index
may or may not affect the previously computed opportunity costs of the remaining candidates
or indices in the set X∗. The opportunity cost computed for a candidate j only changes and
increases when

1. the removal of j∗ from X makes j the new best candidate location from X∗ for the
demand of any node i previously allocated to j∗

2. j is the best candidate for the demand node i and j∗ is the next best candidate location
for the same node prior to j∗’s removal as a candidate

In the first case, b(i,X) = j∗ and b′(i, X̃) = j. The demand node/s, i satisfying this condition
is/are sure to minimize cost to satisfy its/their demands if it/they are reallocated to j after
its/their best alternative j∗ has been removed. An increase in the opportunity cost of candidate
j is realized since not retaining j now as candidate foregoes the opportunity of having this new
best source satisfy the demand of node i previously allocated to j∗. Hence, for a demand node
i,if b(i, X) = j∗, the next best choice b′(i, X̃) = j from X becomes the best choice b(i, X∗),in
the remaining set of indices X∗ that satisfies the demand of i. A new index, b′(i, X̃∗), will
represent the next best location for i from X∗. The increase in opportunity cost of index j is
equal to d′(i, X̃∗)− d(i,X∗).

In the second case, the index j remains the best source in the smaller set of candidates, X∗,
or b(i,X) = b(i,X∗) = j for the demand of i upon the removal of j∗. But the opportunity cost
of j will still increase since not retaining j forces the demand of i to be satisfied by another
candidate from X∗ that is farther from j than j∗.

3.5.3. Computational Example of the Child Generation using Opportunity Costs The
computation of opportunity costs is illustrated using the two parent set solutions:

XP1 = [1, 2, 3.4, 5] XP2 = [1, 2, 6, 7, 8].
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i, j 1 2 3 4 5 6 7 8
1 0 810 875 465 915 320 457 580
2 520 0 385 785 430 346 543 390
3 700 235 0 560 750 320 643 228
4 120 200 170 0 255 185 330 465
5 269 380 727 198 0 510 609 425
6 700 520 400 395 165 0 547 250
7 1100 1080 630 459 270 550 0 490
8 1230 970 650 410 814 730 360 0
9 841 624 1405 562 471 285 657 312
10 623 390 150 600 520 462 487 546

Table I. Demand-Weighted Distances Between Demand Node i and Facility Location j

The duplicated location indices are 1 and 2 which could both reflect existing facilities or
merely duplications in candidate facility locations. In any case, they will both be included
in the set of indices of the resulting child. The resulting subset of location indices prior to
the elimination of any unduplicated index as a candidate is X = [1, 2, 3, 4, 5, 6, 7, 8] from a
network with 10 demand nodes. In addition to the 2 duplicated indices, 3 more indices are to
be selected from the 6 unduplicated candidate locations to complete the 5 required facilities
for the child.

The opportunity costs of the 6 candidate locations are computed from the demand-weighted
distances for each demand node i satisfied by each facility j (Figure I).

The best sources for the demands of nodes 1 to 8 are from each of their own locations, or
for i=1 to 8, b(i,X) = j whenever i = j. The best, b(i,X), and second best, b′(i, X̃), sources
for the demands of each node are shown in bold numbers on Table I except for nodes 1 and 2
where the existing facilities are located. Their second best choices are not significant to identify
since the opportunity cost in not choosing any candidate locations to satisfy the demands of
nodes 1 and 2 is zero. If an existing facility j is or will become the best facility to satisfy
the demand of any other node i, the opportunity to choose location j to satisfy the demand
of i will always be available. Hence no additional opportunity cost is incurred in the removal
of any candidate location once the demand of a node is satisfied by an existing facility. The
best and second best facility locations to satisfy the demands of nodes 3 to 10 are shown in
table 2. The last column shows the corresponding opportunity costs when the best facility
locations are not chosen to serve the demand of each demand node. Table 3 summarizes these
opportunity costs according to the indices of the location candidates.

The candidate location that has the least opportunity cost from Table III is index j∗ = 4.
It will be removed from the list of candidate locations for the resulting child from among the
6 candidates to incur the least opportunity cost to the network. The removal of index 4 as a
candidate affects only node 4 where it was the best source for its own demand, b(4, X) = j∗ = 4.
The next best source for node 4, as shown from Table II, is the existing facility 1 which now
becomes the new best source to satisfy the demand of node 4, b′(4, X) = 1 = b(i, X̃). Since
this is not a candidate node but an existing facility the removal of another location index as
candidate among the remaining indices 3,5,6,7 and 8 will no longer affect the demand of node
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i b(i, X) b′(i, X) d′(i, X ∼)− d(i,X)
3 3 8 228
4 4 1 120
5 5 4 198
6 6 5 165
7 7 5 270
8 8 7 360
9 6 8 27
10 3 2 240

Table II. Best and 2nd Best Facility Locations

b(i, X) = j OCj

3 228 + 240 = 468
4 120
5 198
6 165 + 27 = 192
7 270
8 360

Table III. Opportunity Costs of Candidates

j OCj

3 468 + 0 = 468
5 198 + 0 = 198
6 192 + 0 = 192
7 270 + 0 = 270
8 360 + 0 = 360

Table IV. Opportunity Costs of Remaining Five Candidates

4. So that no additional opportunity cost is incurred in removing the next candidate which is
index j∗ = 6 as shown in Table IV.

The removal of index 6 as a location candidate leaves the set of indices X∗ = [1, 2, 3, 5, 7, 8].
This affects the demands of nodes 6 and 9 (Table II) where their demands will have to
be satisfied by their second best facility locations namely, b′(6, X) = 5 and b′(9, X) = 8,
respectively. These location indices, 5 and 8, become the new best facility locations for the
corresponding demands under the set X∗. Unlike the removal of index 4, however, facility
locations 5 and 8 do not have existing facilities. The new second best facility locations for the
demands of nodes 6 and 9 are the location indices b′(6, X̃∗) = 8 and b′(9, X̃∗) = 5, respectively.
The additional opportunity lost from the removal of the new best facility locations 5 and 8 as
candidates are
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j OCi

3 468 + 0 = 468
5 198 + 85 = 283
7 270 + 0 = 270
8 360 + 159 = 519

Table V. Opportunity Costs of Remaining Four Candidates

d′(6, X̃∗) = 250− 165 = 85
d′(9, X̃∗)− d(9, X∗) = 471− 312 = 159.

There are no changes in the opportunity costs in removing indices 3 and 7 since neither is
a new best source for the demands of the nodes left unsatisfied by the removed index j∗ = 6.
With the opportunity cots of these candidates remaining the same, the process of determining
which among the remaining candidate locations a facility must be placed is simplified especially
in larger networks where n >> P .

Candidate facility location 7 has the least opportunity cost (Table V) which leaves the
indices 3, 5 and 8 to be combined to the duplicated indices 1 and 2 forming the resulting child
XP = [1, 2, 3, 5, 8]. This child solution is ready for an evaluation of its acceptance into the
population of the next generation.

3.5.4. Improvement of the Population A candidate solution or child is accepted as a new
member of the next generation provided that its fitness value is better than the worst fitness
value of the current population. If the child is accepted, new worst and best values of z
are checked for changes in values while parent-selection probabilities of the members of the
new population are recomputed. If the generated offspring is rejected, another parent-pair is
obtained for the generation of another candidate solution.

3.6. Mutation

Genetic diversity can be maintained using the process of mutation where a trait or candidate
location index is randomly selected and changed as necessary. The chance of its occurrence
in nature is estimated by Skinner, M. at 10%. Lorena [16] introduced their own interchange
heuristic for a local search mutation for the capacitated P -median problems. “Mutation alone
does not generally advance the search for a solution, but it does provide insurance against the
development of a uniform population incapable of further evolution.” Holland [15]. Sufficient
balance between selective pressure and genetic diversity must be achieved to prevent premature
convergence. In the proposed genetic algorithm, mutation rate is taken to be at a 10 percent
level.

3.7. Termination

The generation of offspring is terminated until a number of children have failed to replace the
best solution of the population. Termination is done when there is no change in the current
value of the best solution for (n− k)/

√
p− k times Alp [1]. Other termination criteria may be
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used to determine the maximum number of iterations to be implemented. The pseudocode is
provided as appendix.

4. RESULTS AND DISCUSSION

This section presents the summary of the solution and performance of the proposed opportunity
cost-based genetic algorithm for the P − k median problem along with the solutions provided
by the Lagrangian relaxation to the P -median problem and solutions of the myopic algorithm
with an applied neighborhood search improvement to the P − k median problem.

4.1. Computational Analysis and Model Application

Using the Lagrangian relaxation approach to solve a P -median problem does not result in
the solution of any other median problem Daskin [4]. So that it was not used to solve the
P − k median problem of increasing the number of facility locations from k to P . However, to
evaluate the performance of the proposed algorithm in terms of the quality of solution against
the myopic algorithm with neighborhood improvement, the known optimal solutions of the
Lagrangian relaxation approach for various values of P with no existing facilities (k = 0)
for the Galvao-100 test problem set with 4950 links were used. These also serve as basis to
generate the different location indices representing the candidates and the k existing facilities.
The data input files can be downloaded from www.bus.ualberta.ca/eerkut/testproblems and
were modified to suit input file format in the source code.

The performance with respect to the quality of solution for the addition of P − k locations
to the k existing facilities is compared between the proposed genetic algorithm and the
myopic algorithm. Recall that the myopic search algorithm allows increases in the number
of facility locations. Improvement in the solution of the myopic algorithm was made through
the application of the neighborhood search algorithm. The same number of iterations was set
for the termination of both the myopic algorithm with neighborhood improvement and the
proposed genetic algorithm. Both the proposed genetic and improved myopic algorithms were
programmed with the source code of these models compiled and run using the built-in C/C++
compiler in Linux system.

The optimal solution is still based on the solution of the Lagrangian relaxation approach.
Having set the same termination criterion for both algorithms, the performance of each of the
programmed algorithms was evaluated solely on the values of their evaluation or cost functions
for chosen ranges of P and k. With the number of required facilities for the P − k median
problem most critical for values of P−k near (n−k)/2, only solutions at this critical level were
the proposed opportunity cost-based algorithm tested. The specific chosen values of P and k
are summarized in Table VI. The P − k median problems were solved using 10 combinations
from each set of P − k median problem whenever possible and performed 30 replications per
combination.

4.2. Model Performance

TableVI presents the performance summary of the proposed opportunity cost-based genetic
algorithm and the improved myopic algorithm for the Galvao-100 test problem set. It includes
the best and worst cost functions obtained by the two algorithms, the mean cost functions and
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Myopic w/ Neighborhood Search Proposed Opportunity Cost-based
Optional Genetic Algorithm (GA)

P k Solution
z* Zave %ave diff Best Worst Best Worst Zave %ave diff

from z* solution solution solution solution from Z*
10 4 4426 4455.6 0.668% 4426 4510 4426 4506 4472.929 1.060%

5 4447.0 0.474% 4426 4510 4426 4488 4460.333 0.780%
6 4429.4 0.077% 4426 4440 4426 4440 4430.667 0.110%
7 4446.8 0.470% 4426 4594 4426 4440 4429.111 0.070%

15 4 3893 3923.7 0.788% 3896 3946 3893 3983 3912.500 0.501%
5 3912.1 0.490% 3893 3935 3897 3918 3913.200 0.520%
6 3911.6 0.478% 3895 3957 3897 3947 3910.700 0.455%
7 3919.5 0.681% 3896 3996 3899 3951 3908.700 0.403%
8 3915.2 0.570% 3894 3994 3898 3937 3903.300 0.265%
9 3922.2 0.750% 3895 3994 3897 3923 3902.600 0.247%
10 3928.4 0.909% 3893 4087 3893 3898 3895.100 0.054%
11 3940.5 1.220% 3893 4087 3893 3927 3897.900 0.126%

20 7 3565 3614.0 1.369% 3580 3701 3575 3607 3577.867 0.361%
8 3614.0 1.363% 3586 3702 3581 3596 3582.800 0.499%
9 3614.0 1.363% 3586 3702 3585 3598 3587.067 0.619%
10 3616.0 1.442% 3579 3725 3572 3589 3578.600 0.380%
11 3613.0 1.335% 3574 3725 3582 3593 3583.933 0.531%
12 3618.0 1.477% 3577 3733 3582 3606 3582.800 0.499%
13 3617.0 1.459% 3575 3733 3581 3592 3582.267 0.484%
14 3606.0 1.144% 3575 3706 3575 3589 3577.267 0.344%
15 3617.0 1.459% 3575 3706 3572 3598 3578.000 0.360%

25 9 3291 3326.7 1.805% 3315 3342 3310 3336 3314.467 0.710%
10 3326.8 1.088% 3318 3342 3311 3344 3316.667 0.780%
11 3325.6 1.051% 3316 3342 3305 3344 3312.067 0.640%
12 3330.0 1.185% 3312 3371 3319 3324 3319.667 0.871%
13 3330.0 1.170% 3311 3373 3309 3322 3310.733 0.600%
14 3330.0 1.170% 3311 3370 3315 3323 3316.600 0.778%
15 3342.0 1.557% 3316 3426 3315 3335 3315.267 0.737%
16 3328.4 1.288% 3320 3373 3316 3355 3319.600 0.869%
17 3328.2 1.282% 3318 3371 3315 3333 3318.400 0.833%

Table VI. Galvao-100 Test Problem Performance

the difference of their solutions as a percentage of the optimal values of z∗. From the results of
30 P − k median problems with 10 or more required facilities and using the same combination
of indices for the locations of existing facilities (Table VI), only at 4 instances has the myopic
algorithm produced better results in its addition of P − k locations for the given network
than the proposed genetic algorithm. This can be observed from the lower average evaluation
function values, Zave, for the first three values of k used for P = 10 and at k = 5 for P = 15.
Both algorithms were able to provide the optimal solutions at lower values of P decreasing
in frequency as P is increased and k is decreased. However, at P = 5, the myopic algorithm
obtains the optimal solution at any value of k and at any combination of the k number of
existing facilities. The best among the best and the worst among the worst values obtained
for each case of P considered are highlighted in Table VI. For the 30 problems solved the best
among the best and the worst among the worst evaluation function vales for different P ′s from
Table VI show that the proposed genetic algorithm is never inferior to the improved myopic
search algorithm. This is also the case when the best among the worst for each value P is
compared between these two algorithms. In fact, for P = 20, the worst solution of the genetic
algorithm for each k value considered is always better than the worst solution obtained by
the improved myopic algorithm. It is only the comparison of the worst among the best values
that neither algorithm completely reigns superior over the other. The %difference among these
values is within 0.077% of the higher value.

It can be deduced from Table VII that the same number of required facilities, P , there are
no drastic changes in the percentage difference from the optimal solution as k is increased. It
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P, No. of Required Facilities
k 10 15 20 25 Mean % difference
5 0.780 0.520 0.650
6 0.110 0.455 0.283
7 0.070 0.403 0.361 0.278
8 0.265 0.499 0.382
9 0.247 0.619 0.710 0.525
10 0.054 0.380 0.780 0.405
11 0.126 0.531 0.640 0.432
12 0.499 0.871 0.685
13 0.484 0.600 0.542
14 0.344 0.778 0.561
15 0.360 0.737 0.549
16 0.869 0.869
17 0.833 0.833

mean % difference 0.320 0.296 0.453 0.758

Table VII. Percent Difference from the Optimal Solution

only has a -0.041% average decrease in this percentage each time k is increased. This reflects
that although an increase in the total number of combinations or solutions, S, is expected as
k decreases as shown in Figure 3, the fraction of the solution space covered by the generated
population D is sufficient in providing near optimal results for this problem instance. This
relationship between S and D has earlier been shown on Figure 5. Moreover, the considerd
values of P and P−k for the application of the P−k median problem have an average increase
in the percent difference from the optimal value of the cost function of only 0.241% each time
P is increased by 5 for constant values of k.

Figure 6 illustrates that for the chosen P − k median problem of P = 10 and k = 6
over 30 replications, the proposed genetic algorithm found solutions with regularity over
different locations of existing facilities. That is, for different starting combinations of indices
for the existing facilities, the proposed algorithm for the 8 out of the 10 combinations shown
in Figure 7 converged at almost the same% difference from the optimal solution. Only in
combinations 4 and 5, at one replication each from these combinations has the evaluation
function of these runs produced a noticeable % difference from the average evaluation function
of the problem instance. The solution of the proposed genetic algorithm to the P − k median
problem illustrated in Figure 7 has not been greatly affected by the considered combination
of locations or indices of the existing facilities.

The important feature of the opportunity cost-based genetic algorithm of improving the
solution set quickly is depicted in Figure 7 where the fitness value for P = 10 has improved by
almost 96% after the 20th iteration. The average cost function for different k values (Figure 8)
has declined faster for lower values of k even if a larger number of solutions, S, is associated
with a lower k value for the same number of required facilities P . So that all values of k from
Figure 8 converged at almost the same number of iterations even though the size of their
solution spaces vary. And the average cost function improves from an 11.8% at 25 iterations
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Figure 6. Cost Function for P=10, k=6

to almost within 5.06% difference from the optimal solution after the first 50 iterations.

The slow decrease in the average fitness values after 50 iterations indicate a reduction in the
variance of the sample population as solution quality improve near the Lagrangian optimal
solution. Most importantly, with only the myopic algorithm among the available heuristic
algorithms capable of increasing the number of facilities from P − 1 to P and from k to P , the
proposed algorithm with its average of 0.52% difference from the Lagrangian optimal solution
outperforms the myopic algorthm’s average of 1.05% difference for the 30 problems presented
in this study.
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Figure 7. Convergence to the Optimal Solution with different k values at P = 10

5. CONCLUSIONS

The use of the opportunity cost-based genetic algorithm in solving the combinatorial problem
of assigning P − k facilities over the n− k candidate locations for the 30 instances presented
has proven to generate better solutions than the improved myopic algorithm. The proposed
algorithm can be very useful for systems constrained by the locations of existing facilities
and for which the network is relatively large so as not to cover all possible solutions nor
predict solution behavior. The computation for determining which locations will incur greater
opportunity costs is simple. Weighted demand-distances need not be computed for nodes not
affected by previous decisions since knowing the best and second best location alternatives
provide easier access to information on minimum costs.
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Figure 8. Average Fitness Values per Generation

6. RECOMMENDATIONS AND AREAS FOR FURTHER STUDY

Further improvement on this research may include unidirectional network problems where a
number of nodes may have no link or the flow is only in one direction; or two-directional network
problems where the demand distances differ depending on which will be the demand source
between two nodes. With the cost/benefit still dependent on the associated distance between
a facility-demand nodes pair, the demand-distance matrix may be modified to incorporate
improbable links for undirectional flow or differentiate associated distances for two-directional
network problems. The proposed opportunity cost-based child generation can be made into a
decision making tool should the opposite of the problem arise such that a need to reduce instead
of increase the number of facilities is required. In which case, the reduction of P − k indices
to the desired number of facilities less than P requires the handling of only one child (from
the current system with P existing facilities) and opportunity costs associated with each of
thye P facilities may be used to decrease the number of these existing facilities. Sensitivity
analysis as the demands of some nodes change may also be another area of application using
unit opportunity costs on the candidate locations to evaluate critical levels of demand when
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it is necessary to change the current assignment of demands to facilities.
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APPENDIX

Pseudo-code and flow of source code

- Read Data file for node distances, and existing k facilities
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- Calculate the population size of the solution set
- Set all initialize the distribution of c group solution set (the existing k facilities are already
a part of the solution so as to make them fixed genes in all solution set)
- Set itermax = (n− k)/

√
p− k;

do{
- Compute Z value of the solution set
- Locate best and worst solution among the solution set
- Compute Probability Distribution P [Vi]
do{

Loop:
- Call random generator to select parents in generating child

Until: selected parents are not the same (i.e. father is not the same as the mother)
- (Generation of Child) Combine the parent solutions into subset of ”size” 2P indices
- Separate the duplicated parent traits m including the k existing facility indices (The

remaining genes are called free genes of size 2P −m)
- Among the candidate location indices, delete the index from the subset that when removed

incurs the least oportunity cost
- the resulting P indices after reducing the subset to k existing facility locations and

P − k candidates is the child generated from the parents

}While Child generated is same as parent

- Call random generator to determine need for mutation;
If mutation must be implemented
- all random generator to determine index j to be replaced;
- Call random generator to determine new location to replace j;

- Check if child generated improves the current solution set by comparing the child’s z value
with the z value of the worst solution Until the current best z − value remains the same for
itermax

Output the solution
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