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Abstract – Queueing systems in the real world can involve multiple types of services provided, such as doctors 

with different specializations in hospitals, highway toll booths handling cash or RFID payment, and the provision 

of several fuels in various dispensers in gasoline stations. These types of queues diverge from the common queue 

types in queueing theory, where it is assumed that only one service type is provided. This study investigates the 

scenario where a queueing system is to be designed to optimize the system performance with respect to relevant 

metrics, in particular, the average sojourn time of all customers that entered the system. Specifically, the study 

tackles the problem of determining which services to offer in a queueing system with a fixed number of servers 

and a fixed service capacity (i.e. number of services provided) per server. In order to provide a mathematically 

tractable solution, the combinatorial optimization problem is formulated as an integer program that is solved 

using the Particle Swarm metaheuristic. Results show improvements of up to 6.9342% in the identified 

performance upon the implementation of the optimal configuration of the queueing system. Sensitivity analysis 

shows the robustness of the methodology for varying mean values of the arrival distribution, allowing for a wider 

range of applicability in the real world. 
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I. INTRODUCTION 

 

 

Basic queueing models involve assumptions for system performance metrics, such as 

average queue time, average sojourn time and average queue length (Kendall, 1953). These 

assumptions include the provision of only a single service type within the system, which is not 

the case in certain instances of real-world queueing systems. For instance, banks often offer a 

variety of services such as deposits, withdrawals, and account opening. These tasks are often 

delegated to different servers (i.e., employees) due to various reasons and objectives, such as 

the minimization of the sojourn time of customers seeking quick transactions.  

 

In this type of queueing system, henceforth called multi-service queueing systems, 

optimizing system performance is not just a matter of determining the number of servers to 

provide (as is with traditional queueing optimization problems), but also which services should 
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be provided by each server. As an example, gasoline stations typically have a few dispensers, 

with each one containing pumps for a certain number of fuel types. Determining which fuel 

types to allocate to each pump, within each dispenser, would be a critical decision to make 

when trying to minimize the station’s customer service time.  

 

Relative to general queueing theory, there are only a few papers that deal with the topic 

of multi-service queueing systems. Within this already limited literature, most deal with the 

configuration of the queueing system and the number of servers, rather than the assignment of 

services to servers.  

 

Two very early studies, Gumbel (1960) and Ancker and Cafarian (1963), initially 

conceptualized and modelled queueing systems with heterogeneous servers, initially focusing 

on variance in service time distributions, then also incorporating multiple service types. The 

concept of queueing systems with lane selection was introduced in Schwartz (1974). In this 

type of queueing system, customers are classified by type, and each one can only be served by 

designated servers of their respective type. This characterization of queueing systems is similar 

to the one being investigated by this study, but with some key differences. The related study 

only investigated two services types, and the said study tackled the problem through the 

derivation of certain quantities rather than the assignment of offered services to optimize a 

system. Green (1985) extended the study of this type of queueing model, but it narrowed down 

the classification of servers to general-use (i.e., can serve all types of customers) and limited-

use (i.e., can serve only one type of customer). The same approach of system characterization 

rather than optimization was taken in the study. Gans and Van Ryzin (1997) considered a job 

shop queueing system which handles several jobs that exhibit routing in accordance with the 

needs of certain jobs. A linear program was developed and solved to determine the queueing 

system configuration for a certain set of jobs. Whitt (1999) took a different approach to 

investigating multi-service queueing systems, focusing on the classification and routing of 

customers of different types to existing servers. Wallace and Whitt (2005) tackled skill-based 

routing in multi-service queueing systems, specifically in call centers, where each server has a 

set of skills that corresponds to certain customer types that they can handle. The study focused 

on determining the number of agents and their respective skills in order to optimize the system.  

 

Looking at more recent studies, Kim et al. (2011) did a study on heterogeneous (i.e., 

dissimilar) servers, but with the focus of varying service times and distributions instead of 

service types. Li and Stanford (2016) looked into a multi-class, multi-server queueing model 

with heterogenous servers, where different service types are present. The focus of the study 

was on service prioritization, as the queueing system that the study investigated was in the call 

center industry. Galankashi et al. (2016) examined the design of petrol stations as queueing 

systems, focusing specifically on two separate services (fueling and payment) and the number 

of servers that provide them. Simulation was used to model the queueing system, and design 

of experiments was used to analyze the results. Similar to Galankashi et al. (2016), Dwijendra 

et al. (2022) focused on fueling and payment as two separate services in petrol stations. The 

same results were obtained, showing that fuel dispenser and cashier count significantly affected 

queueing length. Hillas et al. (2024) investigated heavy-traffic multi-class, multi-server 

bipartite queueing systems wherein customers can only be served by a subset of the servers. 

The type of queueing system investigated is also similar to that being studied by the system, 
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but the scope of the study is substantially different. This study did not look into service 

provision per server, and focused on server assignment instead. Additionally, the inclusion of 

the heavy-traffic condition further differentiates this study.  

 

From here, we see that the problem of selecting which services to provide in a queueing 

system with multiple multi-service servers has not been tackled, even though it has been 

established that this type of queueing system is relevant in the real world. As such, this study 

addresses this gap through the mathematical formulation of this type of queueing system, as 

well as the modelling through simulation of a real-world queueing system that exhibits this 

behavior. The remainder of the paper is as follows: Section 2 discusses the mathematical 

formulation of the problem, Section 3 deals with the methodology for finding an optimal 

solution for this problem, Section 4 discusses the results produced, Section 5 presents relevant 

hypothetical scenarios through sensitivity analysis, and finally, Section 6 concludes the paper. 

 

 

II. METHODOLOGY 

 

2.1 System Description 

To more concretely illustrate the operations of multi-service queues, the study 

investigates a concrete real-world example of a queueing system of this type. Specifically, we 

look at a petrol station that has multiple dispensers. Without loss of generality, this study 

assumes that each dispenser can hold 3 pumps as observed in the fuel station visited. Note 

though that dispensers with 2 or 4 pumps are available in other petrol stations. Each pump 

delivers a certain fuel type. The following characterize the system of interest in more detail: 

1. The station sells I fuel types. 

2. The station has J fuel dispensers. Each fuel dispenser accommodates two queues each 

(i.e., one queue on each side of the dispenser). Hence, the number of queues in the 

system is 2J, each having its own server. 

3. While a dispenser is connected to 6 color-coded pumps – three on each side – the 

physical design of the pumps dictates that both sides should discharge the same set of 

fuel types, since the pairs of pumps are situated on a single dispenser. Thus, only three 

fuel types can be assigned to a fuel dispenser. 

4. Vehicle arrivals have been observed to follow a Poisson process with mean arrival rate 

λ. 

5. The vehicles are classified into K types, k ∊ {A, B}. Type A vehicles are those with four 

or more wheels, while type B are those with two or three wheels. Their respective 

proportions are denoted as pk. Respective arrival distributions are still Poisson 

distributed, with respective mean arrival rates λA and λB, λA+ λB = λ. 

6. Different vehicle types require different fuel types. This results in differing 

probabilities for the required fuel type by each vehicle type. The probability that type 

k vehicle will require fuel j is denoted by pkj.  

7. Service times have also been observed to be different for the two vehicle types. Their 

probability distributions are characterized by the cumulative distribution functions 

GA(y) and GB(y).  
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A sample layout for an instance of the problem is illustrated in Figure 1. In this example, there 

are J = 3 fuel dispensers, producing 6 queueing lines as shown. 

 

 
Figure 1. Petrol station layout with 3 dispensers and 6 queues. 

 

This queueing system is fairly straightforward. As described in Figure 2, it begins with 

the vehicles arriving at the station, where customers first identify the dispensers that offer their 

desired fuel type. Once the appropriate dispensers are determined, customers check which of 

these dispensers has the least number of customers (i.e., shortest queue length including those 

in queue and in server). The vehicle is then refueled when it arrives at the chosen dispenser. 

While this is ongoing, the customer may choose to avail of additional services, such as 

windshield cleaning. Refueling, additional services, and payment are lumped into one service 

in the model by aggregating their service times and defining it as a single distribution. 

Following refueling, the customer makes the payment and leaves the petrol station. 

 

 

 

 

 

 

 

 

 

Enter petrol 

station 

Check which 

dispensers provide 

Check which 

dispenser has 

Move to dispenser 
Refuel, additional 

service, and 

Exit petrol 

station 

Figure 2. Process Mapping Diagram for vehicles entering the petrol station. 
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2.2 Mathematical Model 

In the real world, it is most likely the case that the mathematical model describing this 

queueing process is one that maximizes profit. Another objective often used in queueing 

systems is customer satisfaction, which is affected by the experience of the customer within 

the system. For this study, we focus on the objective of the average customer sojourn time, 

which is the total time a customer spends in the system. This is the sum of the time spent 

waiting for service (if there is any) and the time spent being served. This metric, which is 

represented by the variable W in queuing theory, directly influences a customer’s positive 

experience (i.e., customer satisfaction) (Liang, 2016). That is, minimizing W would roughly 

be equivalent to maximizing customer satisfaction. We thus use the system performance metric 

W as our objective function value to be minimized. 

 

Based on the characteristics of the problem described in the previous subsection, we 

present the following mathematical formulation.  The indices, decision variables, and 

parameters are summarized in Table 1, Table 2, and Table 3, respectively. 

 

 

Table 1. Indices used in mathematical model. 

Index Description 

i Fuel type 

j Fuel dispenser 

k Vehicle type 

 

 

Table 2. Decision variables used in mathematical model. 

Decision Variable Description 

Xij 
Binary variable with value 1 indicating fuel type i is allocated to 

fuel dispenser j, 0 otherwise 

W 
Average customer sojourn time, also commonly known as 

average customer waiting time in the system 

 

 

  

Table 3. Parameters used in mathematical model. 

Parameter Description 

λ Mean of Poisson-distributed Vehicle Arrival Rate 

pk Proportion of vehicle type k 

pkj Proportion of fuel type j requirement for vehicle k 

Gk(y) Cumulative distribution function of service time y of vehicle k 
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𝑀𝑖𝑛 𝑍 = 𝑊                                                                                (1) 
s.t.                            

∑ 𝑋𝑖𝑗

𝑗

≥ 1, ∀ 𝑖                                                                            (2) 

 

∑ 𝑋𝑖𝑗

𝑖

= 3, ∀ 𝑗                                                                            (3) 

            

𝑊 = 𝑓 ( 𝑋𝑖𝑗, 𝜆, 𝑝𝑘, 𝑝𝑘𝑗, 𝐺𝑘(𝑦))                                                     (4)                                            

 

𝑋𝑖𝑗 ∈ {0,1}, ∀ 𝑖, 𝑗                                                                         (5) 

 

 

As previously discussed, the objective function (1) is the minimization of the average 

customer sojourn time across the system, W. Constraint (2) ensures that each service type is 

provided by at least one dispenser in the system. Constraint (3) limits the capacity of each fuel 

dispenser to exactly three fuel types. Constraint (4) indicates that W is a function of various 

system parameters and decision variables. Finally, Constraint (5) ensures that the assignment 

decision variables are binary.  

 

 

III. SOLUTION METHODOLOGY 

 

With the model formulation provided in the previous section, Constraint (4) denotes 

that the objective function W is a continuous variable that is a function of system parameters 

and decision variables. Due to the complexity of the customer queue joining process (i.e., 

determining valid servers, selecting the shortest server) and model assumptions (e.g., non-

Markovian service times, heterogeneous service), traditional ways of expressing W through 

closed-form mathematical expressions are not applicable. As such, the study makes use of 

simulation to model the complex behavior of customers as they traverse the queueing system.  

 

In order to improve the reward returned by the simulation (i.e., objective function value, 

W), we incorporate an optimization step that considers this returned value of each simulation, 

resulting in a simulation-optimization approach. Since this problem of selecting which services 

to provide results in a combinatorial optimization problem that is NP-hard (Toth, 2000), this 

study makes use of a metaheuristic, specifically Particle Swarm Optimization (PSO), to 

produce optimal (or locally optimal) solutions.  

 

 

3.1 Particle Swarm Algorithm 

The particle swarm optimization (PSO) is a population-based metaheuristic that 

resembles group dynamics of birds and fish (Talbi, 2009). PSO is able to provide a close-to-

optimal solution by efficiently iterating through the solution space, for computationally-

intensive problems that cannot be solved optimally through solution exhaustion. The use of 
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PSO in this study stemmed from its simplicity. It relies on basic mathematical operations and 

is computationally efficient, requiring minimal memory and processing power (Kennedy and 

Eberhart, 1995). This is especially critical considering that each PSO iteration involves 

hundreds of replications, with each simulating hundreds of vehicles. 

 

Binary encoding is used to represent a candidate solution to the problem, through the 

use of a Sigmoid function (Nezamabadi-pour et al., (2008). A vector x of binary variables of 

size IJ reflects the solution. The first I elements indicate whether the corresponding fuel type 

should be dispensed by the first dispenser, the second I elements by the second dispenser, and 

so on. 

 

A pseudocode of the metaheuristic is found in Figure 3. The algorithm stops when the 

set number of iterations are performed. 

 

 

Set maximum iterations, number of particles, dimension, w, c1, c2 

 

Generate Swarm Population 

       For all particles p 

              Initialize particle position vector xp
1 

              Initialize particle velocity, vp
1

 

        Evaluate fitness function f(xp
1), using queueing simulation 

        Update Pbestp
1, Gbest1 

For all iterations t 

       For all particles p 

  Update velocity vector vp
t = wvp

t-1 + c1r1(Pbestp - xp
t-1) + c2r2(Gbest - xp

t-1), r1 and r2 

are vectors of random decimals 

   For all dimensions d   

         If r3 < S(vpd
t), then xpd

t = 1, else xpd
t = 0, r3 is a random decimal and S is the sigmoid 

function 

        Evaluate fitness function f(xp
t), using queueing simulation 

        Update Pbestp
t, Gbestt 

Return Gbestt, corresponding solution xp
t 

Figure 3. Pseudocode of PSO as applied in this study. 

 

 

3.2 Simulation Model 

Given the difficulty in evaluating the fitness function of a candidate solution as no 

analytical formula relates the average system waiting time and the other queueing model 

parameters, this study employs simulation to evaluate system performance. When the value of 

the fitness function is sought by the PSO algorithm, the queueing simulation is triggered. 

In this simulation, the number of replications is set by the analyst. The details of the 

simulation are reflected in Figure 4. Aside from the details provided in the description of the 

system, the following additional assumptions are made in the simulation. 
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1. Upon arrival, a vehicle identifies the fuel dispensers that offer their desired fuel type. 

From these fuel dispensers, the vehicle selects the queue with the least number of 

vehicles, considering both those being served and waiting in line. 

2. If there are multiple queues that meet the criteria (must offer desired fuel type, 

shortest queue length), the vehicle will randomly select from these queues. 

 

3. Balking, reneging, and jockeying behaviors are negligible and are not considered in the 

study. This means that no vehicle is barred from entering the queueing system. Once a 

customer enters the queue, they remain in the system until they are fully serviced 

(refueling, additional services, payment). They also do not switch queues. 

The simulation of the queueing system was implemented using Python, through the use 

of the SimPy (v4.1.1) simulation framework. The pseudocode of the model is presented in 

Figure 4. 

 

Set number of replicates, simulation time 

For all replicates r 

Repeat 

Generate vehicle 

Simulate vehicle inter-arrival time based on Poisson arrival 

Compute vehicle arrival time 

Simulate vehicle type based on Bernoulli distribution 

Simulate vehicle fuel type based on probability distribution dependent on vehicle 

type 

Simulate vehicle service time based on probability distribution appropriate for 

the vehicle type  

While vehicle arrival time is within simulation time 

 

For each vehicle that arrives within the simulation time 

Select queue with the least vehicle count that offers the desired fuel type. Break ties 

randomly. 

If server is occupied, wait in queue until server becomes available. 

Complete service time. 

 

Evaluate average vehicle waiting time in the system for the replicate, computed when 

simulation time ends 

Return average vehicle waiting time in the system considering all replicates 

 

Figure 4. Pseudocode of the queueing system simulation. 
 

 



 

109 

SA Lorenzo, PA Villena, A Ani, et al. Phil. Eng’g J. 2025; 46(1): 101-115 

 

IV. NUMERICAL RESULTS 
 

4.1 Estimation of System Parameters 

In order to get realistic estimates of the relevant parameters, actual data was gathered 

on the arrival times, service times, and service types required by customers in a real-world 

queuing service system that exhibits the characteristics considered in this study. The 

observation was conducted during a time window when vehicle arrival is relatively at its peak 

within the day. 

 

The fuel station observed offers I = 5 fuel types among its J = 3 fuel dispensers. There 

are K = 2 vehicle types as described earlier. Other system parameters are presented in Table 4. 

 

Table 4. Queueing system parameter values. 

Parameter Value 

Mean of Poisson-distributed 

vehicle arrival rate, λ 
62.52 vehicles / hr 

Proportions of vehicle types, pk pA = 0.47, pB = 0.53 

Proportions of fuel requirement of 

a vehicle type, pkj 

pA1 = 0.0417, pA2 = 0.2917, pA3 = 0.0417, pA4 = 0.2917, 

pA5 = 0.3333, 

pB1 = 0.0000, pB2 = 0.0000, pB3 = 0.0000, pB4 = 0.5000, 

pB5 = 0.5000 

Service time distribution per 

vehicle type, in seconds 

GA(y):  gamma(shape = 5, scale = 49.59) 

GB(y):  gamma(shape = 3, scale = 36.46) 

 

 

4.2 Parameters of PSO algorithm and queueing simulation. 

The hyperparameters of the PSO metaheuristic include inertia weight (w), cognitive 

coefficient (c1), social coefficient (c2), and population size. For this study, the values used were 

w = 0.7, c1 = 1.5, and c2 = 1.5, with 50 particles in each iteration. These values are within the 

commonly-used values for PSO hyperparameters, slightly adjusted to follow a slower, more 

stable convergence (Bigdeli, 2015; Eberhart and Shi, 2000). After 500 iterations, the algorithm 

is terminated with the identified near-optimal solution. 

 

Regarding the queueing simulation, 100 replicates were performed per run. This results 

in a standard error of 0.012689 for the base (current) model, suggesting fairly consistent results. 

The simulation run time is set at 2 hours, reflecting the estimated duration of a peak period in 

the fuel station. Warm up period is deemed unnecessary since peak period is usually preceded 

by a lull in vehicle arrival, at least for the station observed. However, the addition of warm up 

time may be considered in other models depending on how the initial situation affects the 

results.  

 

4.3 Results 

The simulation is initially run to illustrate the base case of the queuing system. Using 

the data obtained through observation as values to the simulation parameters, we run the 

simulation-optimization methodology to come up with the best solution to our mathematical 
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program. We arrive at the following solution to the model, summarized through the following 

vector of decision variables. 

 

From the equation of vectors, we identify that solution for the optimal configuration, 

O, the optimal configuration in Table 5 is providing fuel types 3, 4 and 5 to dispenser 1, fuel 

types 1, 4 and 5 to dispenser 2 and fuel types 1, 2, and 4 to dispenser 3, resulting in a WO value 

of 3.2050 minutes. 

 

Table 5. Optimal Solution. 

Solution Type Variable Values 

Optimal Solution 
[𝑋11

𝑂  𝑋21
𝑂  𝑋31

𝑂  𝑋41
𝑂  𝑋51

𝑂  𝑋12
𝑂  𝑋22

𝑂  𝑋32
𝑂  𝑋42

𝑂  𝑋52
𝑂  𝑋13

𝑂  𝑋23
𝑂  𝑋33

𝑂  𝑋43
𝑂  𝑋53

𝑂 ] 

= 

[0 0 1 1 1 1 0 0 1 1 1 1 0 1 0] 

 

 

In order to assess whether the simulation-optimization methodology of the study has 

produced a better solution than the current one, we compare the base case WC, which was 

obtained using the current configuration shown in Table 6. 

 

 

Table 6. Current Configuration. 

Solution Type Variable Values 

Current Configuration 
[𝑋11

𝐶  𝑋21
𝐶  𝑋31

𝐶  𝑋41
𝐶  𝑋51

𝐶  𝑋12
𝐶  𝑋22

𝐶  𝑋32
𝐶  𝑋42

𝐶  𝑋52
𝐶  𝑋13

𝐶  𝑋23
𝐶  𝑋33

𝐶  𝑋43
𝐶  𝑋53

𝐶 ]  

=  

[1 1 1 0 0 0 1 0 1 1 0 1 0 1 1] 

 

 

The current configuration has an evaluated WC = 3.3821 minutes. Compared to the 

current configuration, the identified optimal solution with WO = 3.2050 minutes comes up to a 

5.2364% decrease in average sojourn time for the customer, simply by reconfiguring the 

services provided by the servers. The 95% confidence intervals of the current configuration 

and the optimal solution are shown in Table 7 and Table 8 respectively. This set of results was 

minimally different from the result reported earlier as these figures were identified by running 

the relevant configuration in the queueing simulation with 1,000 replications. 

 

Table 7. Confidence Interval of the Current Configuration. 

Metric Mean Std Dev ± 95% CI 

Total Time in the System 3.3888 0.3511 0.0218 

 

 

Table 8. Confidence Interval of the Optimal Solution. 

Metric Mean Std Dev ± 95% CI 

Total Time in the System 3.1540 0.2613 0.0162 
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These show that the difference between the distribution means is statistically significant 

(p-value = 0.000), numerically proving that the improvement in W is statistically significant as 

well. The proposed design, shown in Figure 5, aims to minimize the average sojourn time at 

the petrol station. To achieve this, it is recommended to make the following adjustments: assign 

products 4 and 5 to dispenser 1 (replacing products 1 and 2), move product 1 to dispenser 3 

(replacing product 5), and increase the number of pumps allocated for product 1 on dispenser 

2 (replacing product 2). 

 

 

 
Figure 5. Proposed Design for the Petrol Station. 

 

 

Further analysis was conducted to evaluate the proposed design of the PSO algorithm. 

As shown in Table 4, the vehicles requiring product 1 have one of the lowest arrival rates. 

However, the PSO algorithm recommended increasing the number of pumps assigned to these 

vehicles. To investigate this counterintuitive recommendation, two modifications were made: 

first, the changes in dispenser 2 were reversed by not replacing product 2 with product 1; 

second, the changes in dispenser 3 were reversed by not replacing product 5 with product 1. 

The results of these adjustments are presented below. 
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Table 9. Results of Reversing the PSO Recommendation. 

Changes Configuration Mean 
Standard 

Deviation 

P-Value (vs. 

recommended) 

Do not replace 2 with 1 [0 0 1 1 1 0 1 0 1 1 1 1 0 1 0] 3.1393 0.2577 0.2054 

Do not replace 5 with 1 [0 0 1 1 1 1 0 0 1 1 0 1 0 1 1] 3.1481 0.2507 0.6064 

   

The results above indicate that reversing the recommendation of the PSO algorithm 

does not lead to a statistically-significant change in performance. The notable improvement 

comes from increasing the number of pumps offering product 4 – specifically, when all 

dispensers are equipped with pumps for product 4. This configuration provides greater 

flexibility, allowing vehicles to switch to alternative dispensers when those serving product 5 

are occupied. This is particularly beneficial given the high arrival rate of cars requiring product 

5. 

 

 

V. SENSITIVITY ANALYSIS 

 

In order to test the robustness of the study’s methodology, we run additional scenarios 

where the mean arrival rate, λ, is adjusted to values lower and higher than the base case. Though 

customer arrival is stochastic, there may be instances where the actual distribution parameters 

change, such as the increase of the mean arrival rate due to residential establishments 

increasing the customer base of the fuel station. We look into these situations to test whether 

or not the study’s methodology still holds for different values of λ and not just the one observed. 

The same objective function value W is compared for the current configuration and for the 

optimal configuration as determined by the simulation-optimization methodology.  

 

Our sensitivity analysis tests 5 new scenarios where the new mean customer arrival rate 

λ’ is obtained through the multiplication of a constant factor. Specifically, we test the scenarios 

where λ’ = 0.5λ, 0.75λ, 1.5λ, 2λ, 2.5λ. This tests the robustness of the methodology of the study. 

In this phase, the simulation-optimization methodology of simulating the queueing system then 

utilizing PSO to come up with the optimal solution is run for each new λ. Table 10 shows the 

summary of the results: 

 

Table 10. Sensitivity analysis results. 

Adjusted 

Arrival 

Rate, λ’  

Optimal Configuration 

W, mins 
% Change 

in W 

p-value of 

difference Current 

config 

Optimal 

Config 

0.50λ [1 1 1 0 0 1 0 0 1 1 1 0 0 1 1] 2.958 2.943 0.5071% 0.0016 

0.75λ [0 1 1 1 0 1 0 0 1 1 1 1 0 0 1] 3.129 2.983 4.6660% 0.0000 

1.00λ [1 1 1 0 0 0 1 0 1 1 0 1 0 1 1] 3.389 3.154 6.9342% 0.0000 
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1.50λ [1 0 0 1 1 0 1 1 0 1 0 1 1 1 0] 5.020 3.933 21.6534% 0.0000 

2.00λ [0 0 1 1 1 1 1 0 0 1 0 1 1 1 0] 11.041 7.402 32.9590% 0.0000 

2.50λ [1 0 1 0 1 1 0 1 0 1 1 1 0 1 0] 18.253 15.728 13.8333% 0.0000 

 

We can see from the table that W has been seen to decrease upon utilization of the 

study’s methodology to determine the optimal configuration. We see a consistent decreasing 

trend in W, though varying in magnitude. This tells us that the study’s methodology is 

consistent in producing better-than-current solutions even if distribution parameters change.  

 

To prove the significance of the differences between the current and optimal 

configurations, the p-value of corresponding t-test comparisons are also computed. The p-

values are all close to 0, further solidifying the significance of the improvement of the sojourn 

time.  

 

On the cases where λ’ = 2.50λ and λ’ = 2.00λ, we see that the magnitude decrease has 

lowered from the previous value of 13.8333% and 32.9590%, respectively. This is due to the 

% decrease in W being a relative metric, and the absolute reduction of W has been sustained. 

However, this tells us that in higher values of λ, other solutions may be needed to further reduce 

W, as required.  

 

In order to further illustrate the benefits of the methodology, other metrics are 

computed for each new value of λ as well, as shown in 11. 

 

Table 11. Sensitivity analysis supporting metrics. 

Arrival 

Rate λ’  

Ws, mins Type A, num Type B, num 

Current 

config 

Optima

l Config 

Current 

config 

Optimal 

Config 

Current 

config 

Optimal 

Config 

0.50λ 2.9116 2.8978 29 30 33 33 

0.75λ 2.9134 2.9055 44 43 50 50 

1.00λ 2.9082 2.9014 58 60 66 65 

1.50λ 2.9177 2.9152 87 88 97 98 

2.00λ 2.9345 2.9084 106 109 112 124 

2.50λ 2.9727 2.8691 116 116 116 130 

 

From Table 11, we see that Ws does not change significantly at all. This aligns with the 

theoretical expectation that the service time Ws is not affected by changes in the system (only 

changes in the service distribution would change Ws). We also compute the actual count of 
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customers served and see that there is no significant difference between the current 

configuration and the optimal configuration. This tells us that while the methodology is 

effective in reducing the main metric W, it is not effective in increasing other metrics such as 

the system throughput. Provided that all fuel types are available and system capacity can 

accommodate the demand, all customers are eventually served. 

 

 VI. CONCLUSION AND AREAS FOR FURTHER STUDY 

6.1 Conclusion 

Muti-service queueing systems have several applications in real life, and determining 

the service types to provide is a real problem that can increase system performance when 

solved. This study utilized a simulate-and-optimize approach to determine if improvements 

can be made to a real-world multi-service queue. With the aid of PSO, a close-to-optimal 

solution that performs better than the current configuration has been produced within a 

reasonable amount of time, especially in the context of the strategic-to-tactical decision of 

which service to provide. The customer sojourn time has been shown to decrease by 6.9342% 

by transitioning from the current setup to the close-to-optimal one, and this is done without 

any modification to the queuing system other than reconfiguring the services provided. 

 

6.2 Recommendations for Future Studies 

While this study closely approximates actual fuel stations, future studies may 

incorporate additional elements in the model to further enhance its validity. For instance, the 

inclusion of pump attendants in the simulation may be considered, especially if their 

availability is a limiting resource. Balking, reneging, and jockeying may also influence model 

results when they become prevalent. For fuel stations along two-way roads, direction of 

vehicles and the location of vehicle fuel tank can considerably affect the driver’s choice of 

preferred queue. The impact of this may be explored by future studies. It is also common to 

see fuel stations with two sequential fuel dispensers per platform (i.e., the physical structure 

where dispensers are placed), representing multi-server setup. If a station is configured this 

way, blocking may be substantial, which merits additional analysis. 
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