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Abstract – Microscopy is the study of analyzing cells and molecules at the microscopic level using tools such as 

light microscopes. Images from the microscope are imported into image analysis software to further evaluate the 

cell count and measurements of the cell. Artificial intelligence is being utilized in microscopy for faster analysis 

of cells, allowing researchers to train the software to recognize specific cells and molecules. Analytical and 

artificial image analysis programs, using FIJI/ImageJ and Polygon AI respectively, are compared by their ability 

to analyze chitosan and gold microparticles, as well as compare the speed and accuracy of the software’s 

identification and modeling. Results show that the Polygon AI software fares better at cell detection where the 

pre-trained Somatic model fares over FIJI/ImageJ yielding up to 97% true positive count for chitosan and 90% 

true positive count for gold microparticles. FIJI/ImageJ fares better at reporting cell measurements, where the 

region of interest (ROI) borders fully encapsulate the cell compared to Polygon AI with diameter measurement 

differences of 2.7% for chitosan and 41.9% for gold microparticles. Detection of both cells in Polygon AI takes 

only 10 seconds, while cell counting in FIJI/ImageJ takes up to 253 seconds.  A combination of both analytical 

and artificial intelligence programs is needed to combine both their advantages to produce reliable results.                                       
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I. INTRODUCTION 

 

Microscopy is an essential characterization tool utilized in numerous fields such as 

engineering and biology. It can be used to  describe the microstructure of polycrystalline 

materials and measure the average grain size which can be related to strengthening by grain 

refinement mechanism. Microscopy is utilized to research ways to create better innovative and 

technologically advanced materials and devices with lower mass, smaller volume, higher 

efficiency, and lower cost. In biomedicine and biotechnology, microscopes of various 

complexities help in pathology, drug delivery, cell characterization and more.  

 

Light microscopy is one common type of microscopy with resolution that is matched 

to the sizes of cellular to subcellular structures. In fluorescence microscopy, a wide variety of 

fluorescent probes are available to mark proteins, organelles, and other structures for imaging. 

The relatively non perturbing nature of light allows for long-term imaging of living cells to 

monitor their dynamics. Other types of microscopies include nonlinear optical microscopy 

(NLOM) techniques to examine tissue non-invasively without labeling at depths not accessible 
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with traditional microscopy methods. Others utilize both 2-photon fluorescence (2-PF) and 

second harmonic generation (SHG) imaging using autofluorescence and fluorescence-labeled 

tissues and biomaterial structures [1, 2, 3, 4].   

 

Research in microscopy often includes reporting the cell count in a particular area 

viewed under the microscope. To aid the researchers from manually counting all the cells in 

numerous images, advanced software such as FIJI/ImageJ, CellProfiler, Grid cell counter, and 

MetaMorph are used for cell counting.  However, more advanced methodology is necessary to 

improve on 1) accuracy, 2) automation of the analysis and decision-making process and 3) 

large data volume processing. Hence, independent developers program external tools, known 

as third-party plugins, compatible with available programs such as FIJI/ImageJ to add features 

addressing specific needs, and even integrating artificial intelligence to further streamline 

specific tasks [5, 6].  

 

An example of a third-party AI plugin is PIPSQUEAK for FIJI/ImageJ. It was 

developed in 2016 by the Rewire AI team, founded by Dr. John Harkness at Washington State 

University. The goal of the plugin is to facilitate automated cell detection and cell counting by 

encapsulating the target cells inside region of interest (ROIs) borders based on their shape and 

brightness or intensity values. The plugin can detect these due to extensive training of AI-

driven detection-based image identification models using Rewire AI team’s tool, Sightologist 

[7]. 

 

The models for PIPSQUEAK were trained based on thousands of cell images using 

different image staining techniques, six of which include Parvalbumin, c-Fos, Somatic, 

Microglia Cortex, DAPI and WFA staining. In the current version of PIPSQUEAK, these 

image models come as pre-trained options to aid in the researcher’s analysis.  Further 

developments of PIPSQUEAK allow for the researchers to send their newly detected cells to 

be trained as a customized model separate from the pre-trained models [8]. 

 

Eventually, Polygon AI was developed as an offshoot to the PIPSQUEAK plugin by 

evolving into a stand-alone application separate from FIJI/ImageJ. Polygon AI is intended as 

a software for biomedical image analysis. Because of its earlier usage in biomedical image 

analysis, it has developed high accuracy in detecting cells and features in tissues, examples of 

these are c-Fos, DAPI, Microglia Cortex, Parvalbumin, WFA, and Somatic cells. Each of these 

have their own specific image characteristics. In Figure S1, the contours show examples of 

these images and a description of each. 

 

The objective of this study is to determine the applicability of an AI model that has 

been trained on biomedical components for detection and measurement of inorganic/organic 

nano- and micro-sized materials.  This will widen the application of Polygon AI and enable 

image analysis of nanomaterials to be done through an integrated AI software that is already 

available. The anticipated benefit is to have rapid transition to the necessary applications using 

already available tools. This will be done through a comparison of Polygon AI as an imaging 

analysis tool compared to existing software such as FIJI/ImageJ by comparing its accuracy and 

speed when detecting the regions of interest (ROIs). The test structures are micron-sized 

particles of synthesized chitosan and gold agglomerates. Through this study, we aim to gain a 
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better understanding of AI image analysis comparing its output with programs requiring more 

human input. 

 

II. METHODOLOGY 

 

Figure 1 illustrates the schematic that summarizes the flow of the methodology from 

the image analysis and synthesis, which are further described in the next sections. Two images, 

each representing a different cell type, were manually counted. These counts served as a 

benchmark to compare the cell detection accuracy of the recommended and custom models, 

and to assess the impact of image processing adjustments on ROI outputs. 

 

 

 

Figure 1: Schematic of the methodology for image analysis of chitosan and gold 

microparticles 

 

1. Image Analysis 

There are two main programs studied in this work. ImageJ is the standard image 

analysis program where the shape, count, dimension, histogram of data can be taken through 

initial modification of the parameters. These adjustments are verified by an operator.  The 

program Polygon AI was used as the AI-based processor [7]. 

 

a. FIJI/ImageJ 

FIJI, an enhanced version of ImageJ, offered additional plugins tailored for microscopy 

researchers. This program was used to process the images taken with the microscope. To 

prepare the image for ROI counting, the “Threshold” tool was used to select cells by 
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highlighting the bright intensity values of pixels in an image, which are usually contrast to the 

dark pixel values of the background. ImageJ’s Threshold/Binary or color-balance features 

enabled modification and inversion of color or contrast of the images before importing them 

to Polygon AI, where the “Binary” tool converts pixel values into two different values, 0 for 

dark / black values and 255 for white values, depending on the original pixel values of the 

imported image.  This step also helped in the detection of the ROIs within FJI/ImageJ.   

Another image processing method is by image inversion.  An “Inverted” image is where the 

dark pixels are converted to lighter values and vice versa. It is adjusted by combining the image 

stack and adjusting the color balance in FIJI/ImageJ. Additionally, image splitting was applied 

to divide large images into smaller sub images to potentially enhance the ROI detection 

accuracy by reducing errors such as overlapping ROIs or merged cells. Figure 2 illustrates the 

types of processing applied to the images using FIJI/ImageJ. 

 

 

Figure 2: a) Original image and image after the processing methods b) Inverted and c) 

Binary. 

 

b. Polygon AI  

Upon installation, users are prompted to create an account for synching images to 

Rewire AI’s server. The user interface featured a gallery for importing image files and a 

detection area where built-in models could be selected to identify cells in the images (Figure 

S2).  Different image processing methods were compared to check if Polygon AI can correctly 

count and identify all the cells compared to that of a manual count, where the types of 

processing applied differ by their resulting intensity values seen in Figure 2. Users could enable 

the “Recommend Model” option from a drop-down menu, allowing Polygon AI to scan the 

different images through six main built-in models. 

Two key settings were available: Detection Sensitivity and Overlap Removal. 

Increasing Detection Sensitivity allowed for the detection of more cells. This is done as an 

adjustment if the initial run with the default setting were unable to detect actual ROIs. 

Increasing Overlap Removal helped eliminate overlapping ROIs, which often occurred with 

string-like shaped cells. 

The errors in cell detection were evaluated by counting the number of ROIs that 

Polygon AI detected compared to the manual count. Different error types were defined, as 

shown in Figure 3, as follows: a False Positive was when the ROI outline, in red dashed-line, 

was present but did not contain the cell, in orange, or did not fully enclose the cell within its 

ROI, a False Negative was when there was a cell without an ROI, an Overlap Type I was when 



 

92 

AJ Ventura, TA Harun, CJ Kimayong, et al. Phil. Eng’g J. 2025; 46(1): 88-100 

more than one ROI captured one cell, and an Overlap Type II was when one ROI captured 

more than one cell. Errors were determined based on these classifications, and the occurrences 

of each were noted. Users selected the most suitable model, upon initial exploration of the 

models. The model with the highest number of ROIs detected and the least errors (false 

positives and false negatives) are selected.  

 

Figure 3: Error detection types during cell counting in Polygon AI 

When detection errors occurred, ROIs were deleted after the model completed its 

analysis and images were re-analyzed using another model. Additionally, custom model 

training was available to create models for specific cell types as mentioned in the introduction. 

A custom model is defined by teaching the AI of the features of the specific samples – chitosan 

and gold. This involved feeding the AI with many images so that it will be able to identify a 

similar ROI. The aim of using Custom Modeling within Polygon AI is to enable better 

detection of structures that have not been trained as one of the built-in models, which should 

result in better and faster ROI detection.  In Polygon AI, custom models are trained by selecting 

at least five photos detected using one built-in model and their ROIs approved after detection. 

Once selected, at least 20 contours of the cell inside the ROI are manually drawn to follow the 

shape of the cell as well as detect their image contrast (see Appendix 3 Figure S1 in the 

supplementary information). For this experiment, a total of 8 custom models were trained by 

varying the images used for training, two of which included creating models from imported 

ROIs made in FIJI/ImageJ. The ROIs used were processed through previous imaging 

processing methods discussed earlier. Figure S1 illustrates a custom model being trained using 

the minimum 5 annotated images with 20 contours. 

  

c. Laboratory Image Analysis Procedure 

The tools used for running both programs included a computer with 16GB RAM and 

an 8-core 3.3 GHz. FIJI/ImageJ and Polygon AI were installed.  Around 5GB worth of storage 

was needed for storing image files and for the programs. Other equipment used was the ZEISS 

Primotech upright microscope (.czi for Zeiss Microscopes). The image files (.czi) were 

converted to (.tiff) before analysis. Experimental limitations include the available microscope 

lens magnification of 50x and the free license of Polygon AI, which only allows two (2) custom 

models per account. A timer was used to measure the duration of the processes of the detection 

of the ROIs as well as the creation of the custom models. After image analysis in Polygon AI, 

the ROIs are approved, and the data can be exported into a .csv file, and the values of the 

diameter are reported. 
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2. Synthesis 

The model “cell-like” structures were micron-sized chitosan particles. To synthesize 

them, a solution of chitosan (CS) in acetic acid (AA), was mixed with a solution of the cross-

linking agent sodium triphosphate (TPP) following the procedure by Raguindin et al. [9]. 

Samples of the chitosan and acetic acid solution (CS + AA), each 10ml were prepared. The 

cross-linking agent TPP (3mL, 6mL, 10mL) was added immediately and stirred for another 5 

minutes at 700 rpm. After stirring, the droplets of the solutions were set onto glass slides to set 

for microscopy. 

The gold microparticles were synthesized via reduction of Au+3 in a solution of 

chlorauric acid sodium thiosulfate as described in the paper by Otero et al. [10].  The initial 

nanoparticle solution was kept in the dark at room temperature for 24 h for the aggregation of 

nanoparticles to proceed in solution. After this, a murky brown-purple solution was formed. 

This was dropped into glass slides and dried in the laboratory environment. 

The glass slides with gold nanoparticles were imaged with the Zeiss microscope as 

described in the following section. 

 

 

III. RESULTS AND DISCUSSION 

 

Chitosan particles of various sizes were formed by increasing amounts of TPP. A small 

amount of TPP resulted in long, flaky chitosan particles, while a larger amount resulted in 

small, nodular particles. Images of these particles were taken and analyzed using Image J and 

Polygon AI. 

FIJI-processed images were loaded into Polygon AI with the initial "Recommend 

Model" detection settings for chitosan cells and gold microparticle images (Detection 

Sensitivity = 75, Overlap Removal = 25). Only three of the six models detected regions of 

interest (ROIs). Two models captured less than 15% of the total cells in the images, based on 

manual counts. Further experiments in image processing, such as cropping images and 

adjusting pixel intensity and contrast, were conducted to improve detection. After cropping, 

the images were re-analyzed with Polygon AI, and the same three models detected cells. The 

results are discussed in the following sections. 

 

1. Using pre-set models in Polygon AI 

The models that successfully detected chitosan cells were DAPI, Microglia Cortex, and 

Somatic. The models that failed to detect cells were Parvalbumin, c-Fos, and WFA. From the 

three models that detected the cells, the Somatic model closely captured most of the chitosan 

cells and gold microparticles compared to the DAPI and Microglia Cortex models. This was 

due to the chitosan cells closely resembling Somatic cells, which are known as the simplest 

body cells with the complete number of chromosomes [11]. According to the research of Zajác 

et.al, the Somatic cells found in raw cow’s milk closely resembled the shape of the chitosan 
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and gold cells (Figure 4) [12]. Since the Somatic model was also able to identify both the 

chitosan and gold microparticles from the initial Recommend Model scan, it was used to test 

the detection of cells with different image processing methods and for subsequent custom 

model training. 

 

 

Figure 4: Sample Polygon AI ROI detection results using the “Recommend Model” option 

for a) Chitosan and b) Gold Microparticles using Somatic (left) and WFA (right) models. 

 

Table 1 shows the ROI detection results of chitosan cells using the different image 

processing methods. From a manual count, the total number of chitosan cells in the image is 

105. The imaging process method that performed the best is performing a Binary method and 

splitting the images, which resulted in a difference of 2.86% from the original count, followed 

by the Binary method on not splitting the images with a difference of 4.76%. The worst 

performing method is splitting the original image, which resulted in a 55.24% difference and 

reported up to 76 False Positive ROIs and 67 False Negatives. In comparison to FIJI/ImageJ, 

the best imaging processing method in Polygon AI detected 17% more ROIs and is likely due 

to the errors in processing such as merged cells and cells along the edges in FIJI/ImageJ. 
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Table 1: Summary of the detection of Chitosan cells using the Somatic model with different 

image processing methods applied before running Polygon AI analysis 

Method Type Total 

ROI 

Count 

(b) 

False 

Posi-

tive 

False 

Nega-

tive 

Overlap 

Type I 

Overlap 

Type II 

True 

Posi-

tive 

(c) 

Total 

ROI 

Counted 

vs 

Manual 

Count 

=b/a 

Total 

True 

Positive 

vs 

Manual 

Count 

=c/a 

Remarks 

Manual count 105 

(a) 

- - - - - - -  

FIJI/ImageJ 87 0 18 - - 87 82.86% 82.86%  

Not 

Split 

Original 153 63 18 3 0 87 145.7% 82.86%  

Inverted 125 23 7 4 0 98 119.04% 93.33% Overcount 

Binary 121 9 5 12 0 100 115.2% 95.24% Overcount; 

second 

highest true 

positive; 

lowest 

errors 

Split Original 124 76 67 1 0 47 118.09% 44.76% Overcount 

Inverted  123 32 33 21 0 72 117.14% 68.57% Overcount 

Binary 125 19 3 4 0 102 119.04% 97.14% Overcount; 

highest true 

positive 

Legend: Original: No image processing was applied to the image; Invert: The values are 

inverted; dark pixel values turn light and vice versa; Binary: Only black and white values are 

rendered, where black is the background color and white is the cell color; Split: Images are 

split to more than one image; Manual Count: Cells are counted by hand, ROI: Regions of 

Interests outlines that enclose the cell; False Positive: ROI present without cell inside; False 

Negative: Cells without ROI; Overlap Type I: Cell with 2 or more ROIs; Overlap Type II: ROI 

with 2 or more cells 

 

In the analysis of gold particles, through manual counting, the total number of 

microparticles in the image was determined to be 21, see Table 2. Applying the image 

processing methods, the imaging process method that performed the best is Binary method and 

it did not depend on whether the image was split or not. This resulted in a difference of 33% 

from the original count. The worst performing method is splitting the inverted image, which 

resulted in a 319.05% difference and reported up to 64 False Positive ROIs. However, the latter 

model was the most accurate in terms of the number of True Positive ROIs detected, with a 

difference of 9.52%.  In comparison, FIJI/ImageJ reported a lesser difference of 19.05% of 

detected ROIs compared to the Binary method reporting 33% difference. In terms of the 

number of True Positive ROIs, the Split Inverted fared better than the 19.05% difference of 

FIJI/ImageJ.   
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Table 2: Summary of the detection of Gold microparticles using the Somatic model using 

different image processing methods applied before running Polygon AI analysis 

 Method 

Type 

Total 

ROI 

Count 

(b) 

False 

Posi-

tive 

False 

Nega-

tive 

Overlap 

Type I 

Overlap 

Type II 

True 

Posi-

tive 

(c) 

Total 

ROI 

Count 

vs 

Manual 

Count 

= b/a 

Total 

True 

Positive 

vs 

Manual 

Count 

= c/a 

Remarks 

Manual 

count 

21 (a) - - - - - - -  

FIJI/ImageJ 17 0 4 0 0 17 80.95% 80.95%  

Not 

Split 

Original 54 42 11 2 0 10 257.14% 47.62% Overcount 

Inverted 34 26 14 1 0 7 161.90% 33.33% Overcount 

Binary 14 2 10 1 0 11 66.6% 52.38%  

Split Original 76 62 11 3 0 10 361.90% 47.62% Overcount 

Inverted 88 64 2 5 0 19 419.05% 90.48% Overcount 

Binary 28 13 6 0 0 15 133.33% 71.43% Overcount 

Legend: same as Table 1. 

 

2. Custom Models in Polygon AI 

The custom model for chitosan cells that produced the closest ROI detection was the 

one created using Binary images resulting in a 17.14% difference from the manual count. 

However, upon closer inspection of the images, all models only detected less than 4% of the 

chitosan cells. From the errors, the model using the original images produced the most amount 

of False Positive ROI detections with a count of 130, while the inverted model produced the 

least amount with 96. Overlap errors were also prevalent with 27 counts seen at the inverted 

model, whose ROI captures more than 3 cells with the ROI. The custom model for gold 

microparticles that produced the closest ROI detection was the Binary model resulting in a 

33.33% difference from the manual count, and its model detected 11 of 21 True Positive ROIs. 

The inverted model detected the most ROIs, yet only one True Positive ROI was correct with 

2 Overlaps present. Based on the results, the built-in Somatic model is better at detecting True 

Positive ROIs of chitosan particles compared to the custom models trained from actual pictures 

of chitosan particles. As seen in the images, the ROIs fail to fully enclose the cell, which ranges 

less than 50% of the target cell captured. From there, the minimum of 5 images and 20 contour 

drawings is not enough for the custom model to accurately capture the chitosan cells and gold 

microparticles. Figure 5 illustrates the detections of the custom models for both chitosan and 

gold microparticles. 
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Table 3: Summary of the detection of Gold microparticles using the Custom model using 

different image configuration 

Cell 

Type 

Custom 

Model 

Type 

Total 

ROI 

Count 

(b) 

False 

Positives 

False 

Negatives 

Overlap 

Type I 

Overlap 

Type II 

True 

Posi-

tive 

(c) 

Total 

ROI 

Count 

vs 

Manua-l 

Count 

= b/a 

Total 

True 

Positive 

vs 

Manual 

Count 

= c/a 

Remarks 

Chito

-san 

Manual 

count 

105 

(a) 

- - - - - - - - 

FIJI/ 

ImageJ 

140 127 101 0 9 4 133.3

3% 

3.81% x 

Original 145 130 103 7 6 2 138.1

0% 

1.90% x 

Inverted 133 96 102 7 27 3 126.6

7% 

2.86% x 

Binary 123 110 102 1 9 3 117.1

4% 

2.86% x 

Gold Manual 

count 

21 

(a) 

- - - - - - -  

FIJI/ 

ImageJ 

14 2 10 1 0 11 66.66

% 

52.38%  

Original 41 38 19 0 1 2 195.2

4% 

9.52%  

Inverted 55 52 20 0 2 1 261.9

0% 

4.76%  

Binary 14 2 10 1 0 11 66.66

% 

52.38%  

Legend: Same as Table 1; x = over detection and under detection errors are too large  

 

 

Figure 5: Sample ROI detection results of Chitosan particles (left) and Gold microparticles 

(right) after running through custom trained models 

3. Measurements of ROIs 

After the ROIs are detected, the software allows for data of the cell from the ROIs to 

be exported. Measurements include the area and diameter of the cell, circularity, mean 
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intensity, and others. Area and diameter values are reported in pixels, but it is possible to 

convert these values in terms of micron, should the microscope image file present a conversion 

unit of the number of pixels per micron. Diameter measurements of chitosan cells and gold 

microparticles from both FIJI/ImageJ and Polygon AI are compared, see Table 4. The 

difference between the average values of the chitosan cells is 2.7% and 41.9% for gold 

microparticles. The larger percent difference with the gold microparticles is due to Polygon AI 

considering the size of the ROI instead of encapsulating the actual shape of the cell, where in 

the case of FIJI/ImageJ’s ROIs take the shape of the cell. 

 

Table 4. Measurements of particles using both programs 
 Mean, μm Median, μm Mode, μm 

Polygon AI - Chitosan 5.2 5.09 5.04 

Image J - Chitosan 5.06 5.17 5.04 

Polygon AI - Gold 3.89 3.91 4.26 

Image J - Gold 2.74 2.82 3.15 

 

  The time taken to accomplish the ROIs was measured and recorded. Manual counting 

of 105 ROIs took 63 seconds. Using FIJI/ImageJ, identifying the ROIs took between 210 to 

253 seconds. In three trials with different pictures of chitosan cells, the fastest time for Polygon 

AI to process the with the Recommend Model option enabled was 27 seconds, while the longest 

was 51 seconds. Detecting the ROIs of one image using the pre-trained models took an average 

of 10 seconds. For custom modeling, it took 50 seconds to approve 5 images with ROIs, 

followed by an additional 480 seconds for editing and 420 seconds to draw at least 20 contours. 

The entire process took at least 16 minutes or 960 seconds. Another 15 minutes were needed 

for the server to train the model, totaling 30 minutes to create a custom model from scratch. 

Models trained longer if more images were added, and more contours were drawn. If imported 

FIJI/ImageJ ROIs were used, an additional 18 minutes were required to have 5 images with 

ROIs. 

Table 5: Time durations of methods for cell counting of 105 chitosan cells 

Method Time (s) 

Manual Count 63 

FIJI/ImageJ Method 210 -253 

Polygon AI - Pre-trained Model (Somatic) 10 

Polygon AI - Custom Model Method 1800 

 

The advantages of using FIJI/ImageJ include its ability to capture a cell’s contour for 

counting. However, the process is time-consuming due to the necessary image processing steps 

to adjust the intensity values of the cells for better counting. Additional processing is required 

for further accuracy, such as erasing unwanted pixels. Furthermore, individual cells sometimes 

merge after processing them into binary form, and applying a watershed technique can help 

correct this error. 
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Polygon AI offers a simpler process and quicker detection of ROIs. However, time is 

still spent adjusting the Detection Sensitivity and Overlap Removal values, as well as post-

processing ROIs by deleting and resizing incorrect ones. Time is also needed for approving 

the ROIs and drawing the contours from them. From the experiments, the built-in Somatic 

model for cell detection performed better at detecting chitosan cells and gold microparticles 

compared to the custom models. 

This paper focused on chitosan and gold nanoparticles because these are some 

representative materials for various shapes and contrasts of images of inorganic/organic 

microscopic particles. The particles tested were all rounded, spherical, or oblong in shape. This 

is seen to be the reason for the relatively good results in Somatic model. Detection of 

irregularly shaped particles have not been done due to difficulty in obtaining submicron sized 

particles with large length to width ratio. However, it is anticipated that the applicable model 

will also change with shape. 

 

 

IV. CONCLUSIONS AND RECOMMENDATIONS 
 

Polygon AI could detect and count cell-like structures or particles from microscope 

images. However, consideration of the type of models, detection sensitivity, overlap removal, 

coloration, and image splitting required more human input to achieve accurate results. For the 

most accurate detection of chitosan particles, the image should be converted to Binary mode 

before running it through Polygon AI, using the Somatic model. Splitting the images yielded 

higher accuracy. The most accurate detection of gold microparticles was achieved by using the 

Inverted method before running them through Polygon AI, also with the Somatic model and 

by splitting the images. Custom model training, which involved the minimum requirement of 

annotated images and contours, led to inaccurate detection and took longer. 

Creating custom models took longer due to the need to draw individual contours and 

wait for the model to be ready. These custom models detected too many ROIs that were neither 

chitosan cells nor gold microparticles, unlike the available Somatic model in Polygon AI, 

which led to more accurate results. 

FIJI/ImageJ, despite being a reliable tool for detecting and measuring ROIs, was quite 

time-consuming due to the need for adjustments tailored to each image. Polygon AI, 

meanwhile, was limited due to its requirement for large quantities of sample images and ROIs 

for the custom model training to work properly. Additionally, the relatively good counting of 

micro-particles using the Somatic model showed that image analysis can be done without prior 

sample treatment like staining.  Therefore, to combine these advantages, researchers could best 

use Polygon AI’s built-in model for counting cells, while FIJI/ImageJ could be used to measure 

the diameter readings of the cells. 
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