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Abstract – Traditional flood frequency analysis assumes stationary conditions (i.e. the mean and other statistical 

properties are unchanging) prevail in the physical and climatological element driving the phenomenon. With 

climate change and rapid landcover change, this assumption must be reviewed, and new approaches considering 

nonstationarity may need to be adopted. Long-term rainfall and land cover data were used to reconstruct 

historical streamflow in three urban watersheds using deterministic and stochastic techniques. The streamflow 

models were developed with static and time-evolving built-up land cover area to mimic the effect of land cover 

change due to urbanization. Annual flood maximum series were developed from each streamflow data set and 

were tested for trends. The models with time-evolving built-up landcover area (deterministic models) and those 

with urbanization as co-predictors (stochastic models) were able to generate continuous streamflow time series 

that yielded flood extremes exhibiting nonstationarity. The annual flood maxima were fitted onto stationary and 

nonstationary Generalized Extreme Value distribution models using Bayesian approach and successively tested 

for goodness-of-fit and parsimony. All the annual flood series from both deterministic and stochastic models 

satisfactorily fit both the stationary and nonstationary Generalized Extreme Value distribution, with the 

stationary models exhibiting better fit for streamflow models of watersheds with static urbanization scenarios; 

and the nonstationary models exhibiting better fit for streamflow models of watersheds with evolving urbanization 

scenarios. In terms of parsimony, the stochastically generated flood models are better than those developed from 

deterministic models as evidenced by the lower Akaike Information Criterion and Bayesian Information Criterion 

values for all watersheds. The probability of exceedance of floods through some threshold magnitude increases 

under nonstationary conditions. 

 

Keywords: extreme value distribution; flood frequency; nonstationarity; return period; urbanization; land cover 

change; streamflow model 

 

 

 

 

 

I. INTRODUCTION 

 

The Bicol Region, an administrative region covering six provinces with a distinct socio-

cultural and economic identity, is located at the southern tip of the island of Luzon, Philippines. 

Rainfall and tropical cyclones driven by the monsoons and the easterlies define the climate of 

the Bicol Region [1]. These climatic elements results to a large amount of annual precipitation 

and frequent occurrence of intense rainfall events leading to flooding. The changing climate 

and anthropogenic activities - resulting to land use and land cover changes as well as the 

infrastructure that are changing the landscape - are expected to affect the behaviour of the water 
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cycle in the region. It is expected that the shifting nature of flooding will continue to influence 

the lives of the people in the region in the future. The City of Legazpi, being one of two regional 

urban centers in the Bicol Region, is home to many communities vulnerable to flooding. 

 

Climate change and land use change have altered the magnitude and frequency of 

occurrence of extreme events such as floods. Understanding the nonstationary nature of 

random hydroclimatic variables could better equip engineering design practitioners and local 

government planners in addressing the present challenges and future uncertainties in reducing 

and managing hydrologic disaster risks. 

 

1.1 Nonstationarity in hydroclimatic time series 

A time series is stationary if its statistical properties remain constant over time; while one 

is nonstationary, if it has statistical properties that change with time [2, 3]. Stationarity, or 

nonstationarity, could be observed on the mean, the variance or any other higher-order 

moments around the mean of a random variable. Nonstationarity can be caused by various 

deterministic components in the time series. The most common types are trends, jumps/shifts 

and periodicities. A trend is a slow but steady increasing or decreasing change in the mean of 

a time series triggered by an alteration in the hydrologic or climatic environment. A jump is a 

sudden change in the mean at some time step in the time series due to extreme conditions. 

Periodicity is the behaviour of a time series wherein similar values are repeated after some 

elapsed time. For many climatic or hydrological variables, this is usually due to seasonality. 

 

Nonstationarity can be initiated by natural and anthropogenic causes. Large-scale climatic 

variability and natural disruptions (such as volcanic eruption or a large landslide) are some 

examples of natural factors resulting to nonstationarity [4]. The sources of human-induced 

nonstationarity are land use and land cover changes, dams and other flow control structures, 

and greenhouse gas induced climate change [5]. The natural [sinusoidal] fluctuating pattern of 

the different drivers of the climatic system result in the periodicity of many hydroclimatic time 

series whose frequencies could be observed in the seasonal, annual or even decadal time scales. 

More important, however, is the interaction of the different climate driving phenomena 

(spanning varying temporal and spatial scales) that results in either attenuated or amplified 

responses in any or all climatic variables (e.g. precipitation) and hydrologic elements (e.g. 

streamflow) resulting to an increasing or decreasing trend. This interaction is further 

exacerbated by the effects of climate change. A trend is the more common manifestation of 

nonstationarity in hydroclimatic time series [6]. It can be caused by both natural and 

anthropogenic factors [7]. The hydrology in a certain location will definitely be impacted by 

changes in the hydroclimatic system brought about by these natural and anthropogenic 

components. A trend could result in more frequent occurrence of extreme events such as 

flooding. More frequent occurrences of floods of a certain magnitude could render a water 

resource infrastructure’s design capacity to be compromised resulting in the reduction of its 

serviceable lifespan at the very least, or a catastrophic failure as the worst-case scenario in the 

future. 

 

1.2 Analysis of nonstationary extreme events in hydrology 

The study of extreme events such as typhoons, floods, droughts and earthquakes gave rise 

to the development of the extreme value theory [8]. The Gumbel, Frechet and Weibull 
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distribution are three types of extreme value distributions commonly discussed in most 

hydrology and statistics textbooks [2, 8, 9]. The Generalized Extreme Value (GEV) 

distribution is a three-parameter distribution that is ideal for flood analysis. Its probability 

density function (PDF) and cumulative distribution function (CDF) are presented [10] as: 

 

fx(x) =
1

α
exp[−(1 − k)y − e−y]; y = {

−k−1ln⁡ [1 − k
(x−β)

α
] , k ≠ 0

(x−β)

α
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡k = 0⁡

 

 

And 

 

Fx(x) = exp[−exp(−y)] 
 

Where α̂ - scale parameter estimate 

β̂ - location parameter estimate, and 

k – shape parameter estimate 

 

For random variables with time varying distribution, nonstationarity could be modelled by 

allowing one or more of its parameters to vary with time. In the case of the GEV distribution 

presented above, a linear trend, say, in the location parameter is offered by Coles [9]. Other 

more complex models were also mentioned by the same author, such as one in the quadratic 

form and a change-point model. An exponential function is commonly used for the scale 

parameter to ensure that its value remains positive for all values of t [9]. 

 

Another common way of expressing nonstationarity is through covariates. A covariate is a 

variable the behaviour of which may be related to the extreme value series of another. As an 

example, Prosdocimi et al., [11] modelled the location parameter as a function of the 99th 

percentile of the daily rainfall for a nonstationary flood model. A similar example is presented 

by Coles [9] using the southern oscillation index (SOI) as a covariate for the location 

parameter. 

 

These examples illustrate that nonstationarity in extreme value datasets can be represented 

via models that either represent any or all of the distribution parameters as varying over time 

or those that employ covariates that vary with time. It can be further stated that time itself could 

be treated as a covariate and is thus considered as such by Prosdocimi et al., [11] in developing 

nonstationary flood frequency models in an urbanizing catchment. Alternatively, time could 

be viewed as a proxy for covariates that are time variant [12] but which cannot be accounted 

for by physically or quantitatively available data or measurement [13]. 

 

1.3 Analysis of the frequency of extremes 

The occurrence of extreme natural events such as floods, typhoons, storm surges and 

droughts is of special interest in water resources engineering. Their magnitude and the 

regularity by which they happen are important factors that influence the design and 

construction of critical infrastructure such as dams, bridges, sea walls, and irrigation systems 

to name a few. Since the above-mentioned natural events involve random variables, these 

design questions are best solved using probabilistic techniques that deals with extreme value 
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variables. The common approach, however, is to assume stationarity, or to eliminate the 

influence of nonstationarity. In one of the early works on extreme value statistics, Gumbel [14] 

points out that the parameters of the extreme values’ distribution must remain constant (i.e. 

must remain stationary in time or space), or the influence (of nonstationarity) must be 

considered or eliminated. Little attention was paid to time-space variations of hydroclimatic 

variables in the early works on extreme natural events until the recent focus on climate change 

and land cover change due to urbanization and other land-use transformations due to 

anthropogenic causes. This may be attributed to the computational complexity of considering 

nonstationarity and the lack of long-term data early on [15, 16]. 

 

1.3.1 Return period of extremes under stationary conditions 

From the earliest stages of the development of the methodologies that use the concepts of 

return period in water resources engineering design, the condition of stationarity has always 

been imposed. Although authors such as Gumbel [17] have emphasized the alternative case of 

nonstationarity, most hydrology textbooks such as [18], [19], [20] or [3] traditionally present 

the treatment of recurrence interval assuming stationary conditions. The return period is a 

concept familiar to most civil and water resources engineers. The return period is the average 

duration of the time interval of occurrence between events equalling or exceeding a certain 

magnitude [18]. The familiar form of the stationary return period equation as presented by 

Chow et al., [18] is: 

 

E[t] =
1

p
= T 

 

Where p – the probability of occurrence of an event 

T – return period 

 

1.3.2 Return period of extremes under nonstationary conditions 

Salas & Obeysekera, [21] developed a nonstationary return period metric for hydrologic 

events varying through time by having their exceedance probability also varying through time. 

For a probability pt that has an increasing trend, the expected waiting time (EWT), of the first 

occurrence of the success event [22], i.e nonstationary return period: 

 

T = E[X] = ∑ xf(x)

xmax

x=1

= ∑ xpx∏(1− pt)

x−1

t=1

xmax

x=1

= 1 + ∑ ∏(1− pt)

x

t=1

xmax

x=1

 

 

If the probability pt has a decreasing trend, there will come a time x when pt will be zero. 

i.e. the exceedance event will not occur, or the nonexceedance probability qt will conversely 

increase. It may likewise be possible that the event of decreasing magnitude will converge 

exponentially to a future constant value [21]. In this case, the return period would be of the 

form: 

 

T = E[X] =∑xpx∏(1− pt)

x−1

t=1

∞

x=1
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1.4 Nonstationarity in flood frequency analysis 

The recurrence of floods under nonstationary conditions has gained considerable interest 

among hydrologists and water resources engineers [23]. Several studies have been conducted 

to establish a link between nonstationarity in extreme flood events and an explanatory variable 

[13] such as land use changes [11], annual maximum rainfall [23, 24, 25] and population trends 

[24], sea surface temperature [26], El Niño Southern Oscillation [27], time [7, 23, 25, 28, 29], 

climate indices and reservoir indices [28, 30] among others. Nonstationary flood models have 

been developed by fitting annual maximum flows [7, 11, 13, 24, 25, 28, 31, 32], partial duration 

series [7, 11, 27], or seasonal maximum flows [7, 11, 29] to common probability distributions 

such as the log normal, generalized extreme value [25] and log Pearson III models for the 

annual maxima, or the Poisson and generalized Pareto [27] for the partial duration series. The 

parameters for the afore-mentioned distributions are estimated using Maximum likelihood [7, 

25, 29], Bayesian approach [25], least-squares based methods [33] or by using a tool such as 

the generalized additive model for location, scale and shape (GAMLSS) [23, 24, 28, 29, 32] to 

model the flood time series under nonstationarity. Uncertainty is taken into account by 

computing the confidence interval for the desired flood quantile with delta [27, 31], bootstrap 

[31], and profile likelihood [31] method. Meanwhile, [34] used the equidistant cumulative 

distribution function method and the equivalent reliability method to take into account the 

influence of model parameter and precipitation projection uncertainty in estimating the design 

flood under nonstationarity. Goodness-of-fit is typically evaluated using AIC [23], but other 

metrics have also been employed such as the asymptotic ratio test and Q-Q plots [27]. 

 

The study focused on the development of nonstationary flood frequency models for the 

urban watersheds of Legazpi City. It aims to demonstrate that despite the lack of observational 

records, flood frequency analysis on urban watersheds can be done by generating or 

reconstructing historical flood time series based on precipitation and land use and land cover 

change. The study shows that nonstationary flood frequency models can be developed from 

the reconstructed historical flood time series with precipitation and land use and land cover as 

covariates. It also provides a means to evaluate the difference in the frequency probabilities of 

flooding under stationarity and nonstationarity in the urban watersheds. 
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II. METHODOLOGY 

 

Historical Streamflow Reconstruction 

Flood Flow Frequency Modeling 

Frequency Comparison 

Figure 1 Methodological framework 

 

 

The methodological framework is represented by the diagram in Figure 1 in which the 

sequence of steps is connected by arrows illustrating the process from the watershed model 

development to flood flow frequency analysis. The framework provides an overview the major 

steps and the associated methodological decisions in the whole research process.  

 

HEC-HMS Continuous Streamflow 

Model 

• Static Urbanization Scenario Models 

o Observed daily rainfall – main 

input 

o Observed daily streamflow – for 

calibration 

o 1950s, 1980s & 2020s 

urbanization scenarios 

• Dynamic Urbanization Scenario 

Models 

o Observed daily rainfall – main 

input 

o Observed daily streamflow – for 

calibration 

o  

o 5-year urbanization scenario 

updates 

 

Record Extension plus Noise Model 
• Univariate REXTN Models 

o Observed daily rainfall – predictor 

o Observed daily streamflow – 

predictand 
• Multivariate REXTN Models 

o Observed daily rainfall – predictor 

o Urban landcover – co-predictor 

o Observed daily streamflow – 

predictand 

 

Trend Analysis 
• Linear Regression Test     ● Mann-Kendall Test 

 

• Annual Maximum Series 

 

• Annual Maximum Series 

 

• Stationary GEV Models   ●  Nonstationary GEV Models 

o Constant Parameter Estimates     ○   Linear Location Parameter w/ Urban Land  

               Cover as Covariate 

• Goodness-of-Fit & Model Selection Tests 

o K-S Test; AIC; BIC 

 

Flood Frequency Variation under Stationary vs Nonstationary Conditions 

 

Flood Flow Frequency Models 
• Stationary Flood Flow Models    ● Nonstationary Flood Flow Models 

 

69-year Daily Streamflow  
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2.1 The study area 

Figure 2 shows the selected urban watersheds for this study. The watersheds were selected 

based on their proximity to an urban center and PAG-ASA monitoring station, and availability 

of streamflow gauge records. Based on these criteria two ungauged and one gauged urban 

watersheds were chosen. The ungauged watersheds are named Legazpi subbasin 1 and 

subbasin 2. Legazpi subbasin 3 is a gauged watershed with a gauging station in Yawa River. 

Legazpi Subbasin 1 covers the southern sector of the City of Legazpi with an area of 2,236 

hectares. It is projected that the southern portion of the city will increasingly become more 

urbanized in the future since this is the only viable expansion area of the city that is 

continuously developing and growing more populous. The subbasin is drained by the 

Sagumayon River on the upstream, which connects to the Macabalo River that drains directly 

to the Albay Gulf. Legazpi Subbasin 2 covers the main urban and commercial district of the 

city with an area of 578.47 hectares. A pumping station is constructed at the outlet of this sub-

watershed to relieve the city of flood waters that accumulate within the city center during a 

storm event. Legazpi Subbasin 3 covers the northern part of the urban section of the city with 

an area of 6,232.04 hectares. The watershed originates from the crater of Mayon volcano, and 

is the main catchment of its south eastern quadrant. Its main drainage is the Yawa River that 

flows directly into the Albay Gulf. The Bicol Regional Center that houses most of the 

government regional offices is located inside the watershed. 

 

 

 
Figure 2 Urban watersheds in the City of Legazpi 
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2.2 Reconstruction of historical streamflow 

Existing streamflow records are short and intermittent in most river monitoring stations in 

the country. To faithfully capture the nonstationary characteristics of flooding in the selected 

study area, deterministic and stochastic techniques were used and compared. Actual 

streamflow records from the Water Projects Division, Bureau of Design of the Department of 

Public Works and Highways (DPWH) were used to calibrate and validate the models. From 

the model outputs, a flood time series long enough to be amenable to nonstationary 

characterization were obtained. The deterministically and stochastically generated series were 

compared to determine the advantages and disadvantages of the two approaches. 

 

2.2.1 HEC-HMS Continuous Streamflow Model 

A basin model of the urban watersheds was set-up in the Hydrologic Modeling System 

(HEC-HMS) version 4.2 developed, and released in 2016, by the US Army Corps of Engineers 

Institute for Water Resources Hydrologic Engineering Center (CEIWR-HEC). Using the basin 

model manager, the watersheds were represented by subbasin elements, which are then 

connected to a common sink element that represents the water body where all the subbasins 

drain into. In creating the model domain, the choice of the method to characterize the basin 

elements’ properties is generally driven by its appropriateness to long-term continuous flow 

simulation. The HEC-HMS program has numerous computational methods that can be used to 

control the configuration settings of the different hydrologic elements in the basin model [35] 

but not all are compatible with continuous modelling simulations. 

 

 

Table 1. Computation methods for HEC-HMS subbasin model 

Subbasin Model Component Method 

Area GIS based analysis 

Canopy Simple Canopy 

Surface Simple Surface 

Loss Soil Moisture Accounting 

Transform Clark Unit Hydrograph 

Baseflow Linear Reservoir 

 

 

To take into account the increasing urbanization in the watersheds, the whole simulation 

epoch of 69 years (1951 – 2019) is divided into 5-year periods with the effect of the changing 

land cover reflected in each period. In particular, the % impervious area is updated for each 

period based on the prevailing built-up area in the subbasin for the period in question. The 

built-up area for a particular period is estimated from the regression equations for each 

subbasin based on Landsat derived land cover maps. Simulations based on static land cover 

scenarios were also developed wherein % impervious areas corresponding to the 1950s, 1980s 

and 2020s were used. The calculation methods used in developing the subbasin components of 

the HEC-HMS models are listed in Table 1. 

 

The meteorologic information needed to set the boundary conditions for how the basin 

models will perform during continuous simulation were obtained from the observed records of 
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the PAG-ASA Legaspi station for the three urban sub-watersheds of Legazpi. For the ungauged 

sub-watersheds, since the Legaspi station is located in one of the Legazpi subbasins under 

consideration, and is very near the other two subbasins, a single meteorologic model based on 

this station is used in the simulations. Aside from precipitation, maximum and minimum 

temperatures, relative humidity and wind speed were also used as input data in developing the 

meteorologic model. The calculation methods used in developing the meteorologic 

components of the HEC-HMS models are listed in Table 2. 

 

 

Table 2. Computation methods for HEC-HMS meteorologic model 

Meteorologic Model Component Method 

Shortwave Radiation Bristow Campbell 

Longwave Radiation Satterlund 

Precipitation Gage Weights 

Evapotranspiration Penman Monteith 

 

 

To improve the numerous parameter estimates of Legazpi subbasin 3, model optimization 

was conducted by using the historical observation of daily streamflow from Yawa River 

covering the period of 1980 to 1988. For the ungauged Legazpi subbasins, correction factors 

were applied based on the optimized parameters of Legazpi subbasin 3. Adjacent Legazpi 

subbasins (subbasin 1 and 2) where no observed streamflow records are available were 

calibrated by directly assuming the same optimized parameter values as those of Legazpi 

subbasin 3 in cases where such approach is acceptable (e.g. parameters that depend on soil 

characteristics where both gauged and ungauged basins contain similar soil types). For 

parameters that are not amenable to the previous approach, the values are adjusted by a factor 

derived from the rate of increase (decrease) between the initial value and the optimized final 

value of its equivalent parameter in the gauged subbasin. 

 

2.2.2 Record Extension plus Noise Model 

The Record Extension plus Noise (REXTN) model of Salas et al., [36] was used as a 

substitute method to derive the historical streamflow in the urban watersheds. Univariate 

models were developed using the following equations: 

 

𝒚𝒕 = 𝒚̅𝟏 + 𝒂(𝒚𝒕−𝟏 − 𝒚̅𝟏) + 𝒃(𝒙𝒕 − 𝒙̅𝟏) + 𝒄𝜺𝒕    (Eq. 1) 

 

Where 𝒚𝒕, 𝒙𝒕 -variables representing short record (predictand) and long record (predictor)  

respectively over the period (N1) corresponding to the length of the short record 

series 

𝒚̅𝟏, 𝒙̅𝟏 -sample mean of predictand and predictor respectively over period N1 

𝜺𝒕 -normally distributed noise with mean 0 and standard  deviation 1 

 

And the model parameters can be estimated as: 

 

𝒂̂ =
𝒔𝒚𝟏𝒚𝟏(𝟏)𝒔𝒙𝟏

𝟐 −𝒔𝒙𝟏𝒚𝟏𝒔𝒙𝟏𝒚𝟏(1)

𝑠𝑥1
2 𝑠𝑦1

2 −𝑠𝑥1𝑦1
2 (1)

    (Eq. 2) 
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𝑏̂ =
𝑠𝑥1𝑦1−𝑎̂𝑠𝑥1𝑦1(1)

𝑠𝑥1
2       (Eq. 3) 

 

𝑐̂ = √𝑠𝑦1
2 − 𝑎̂𝑠𝑦1𝑦1(1) − 𝑏̂𝑠𝑥1𝑦1    (Eq. 4) 

 

Where 𝑠𝑤𝑢 - represents the sample lag-0 covariance between variables  

wt & ut 

  𝑠𝑤𝑢(1) - represents the sample lag-1 covariance between variables wt &  

ut noting that ut lags one step behind wt 

𝑠𝑦1
2 , 𝑠𝑥1

2 - sample variance of predictand and predictor respectively over 

N1 

 

Meanwhile, the model for multiple explanatory variables has the form: 

 

𝑦𝑡 = 𝑦̅1 + 𝑎(𝑦𝑡−1 − 𝑦̅1) + 𝑏1[𝑥𝑡
(1)

− 𝑥̅1
(1)
] + ⋯+ 𝑏𝑚[𝑥𝑡

(𝑚)
− 𝑥̅1

(𝑚)
] + 𝑐𝜀𝑡 (Eq. 5) 

 

and the model parameters can be estimated as: 

 

𝑎̂ = [𝑆𝑦1𝑦1(1) − 𝑆𝑥1𝑦1
𝑇 𝑆𝑥1𝑥1

−1 𝑆𝑥1𝑦1(1)][𝑆𝑦1𝑦1(1) − 𝑆𝑥1𝑦1
𝑇 (1)𝑆𝑥1𝑥1

−1 𝑆𝑥1𝑦1(1)]
−1

 (Eq. 6) 

 

𝑏̂ = [𝑆𝑥1𝑦1
𝑇 − 𝑎̂𝑆𝑥1𝑦1

𝑇 (1)]𝑆𝑥1𝑥1
−1     (Eq. 7) 

 

𝑐̂2 = 𝑆𝑦1𝑦1 − 𝑎̂𝑆𝑦1𝑦1(1) − 𝑏̂𝑆𝑥1𝑦1    (Eq. 8) 

 

Where 𝑆𝑈𝑉  - is the lag-0 covariance matrix between variable vectors Ut & Vt 

  𝑆𝑈𝑉(1) - is the lag-1 covariance matrix between variable vectors Ut & Vt-1 

The superscript -1 stands for inverse while T stands for transpose. 

 

The rainfall record from the same PAG-ASA stations as in the HEC-HMS models were 

used as the explanatory variable, xt for the single variable model. For the multi-variable model, 

the rainfall record from PAG-ASA and the landcover/ landuse variables were used as the 

explanatory variables. The short-term streamflow record of Yawa gauging station of the 

DPWH were used as data for the predictand, yt. Daily streamflow ensembles of 100 

realizations, each spanning from 1950 to 2019, for both single and multiple variable REXTN 

models were produced to address the uncertainty inherent in the hydrologic model. Each 

realization is tested for trends, and the proportion of stationary to non-stationary streamflow 

time series is noted. Using the sum of absolute differences as the objective function [36], the 

realization with the minimum value is chosen as the best run and is used in the subsequent 

flood frequency model fitting analyses. 

 

Following the concepts of regionalization [37] estimates based on the subbasins’ physical 

attributes and regional characteristics of channel flow in the project site were used in deriving 

the necessary statistics such as the mean, covariance and variance of ungauged basins. The 

mean was estimated from a regionalized scaling factor derived from the ratio of the mean of 
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the observed streamflow of a gauged basin to the basin area. The covariances and variances 

are derived using the gauged basin’s streamflow data and the ungauged basin’s landcover data. 

 

2.3 Flood flow frequency models from reconstructed streamflow 

 

   

a    b    c 

   

d    e    f 

   

g    h    i 

   

j    k    l 
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m    n    o 

   

p    q    r 

Figure 3. Annual maximum streamflow from HEC-HMS (a-l) and REXTN (m-r) models at 

various urbanization scenarios 

 

From the reconstructed long-term continuous flow models, the highest 1-day discharge in 

a year were selected to develop the annual maximum flood time series for each watershed. 

Figure 3 shows the models under different urbanization scenarios. The derived annual maxima 

series were fitted into stationary and non-stationary extreme value distributions to develop 

flood frequency models for the urban watersheds. To test for goodness of fit, the Kolmogorov-

Smirnov (KS) test was conducted, while the Akaike Information Criterion (AIC) [38], and the 

Bayesian Information Criterion (BIC) [39] were used to determine the most desirable model. 

 

2.3.1 Stationary GEV distribution models 

Following Bayes’ rule, the parameters are estimated by multiplying the likelihood function 

by a prior probability distribution that is subjectively based on previous knowledge, 

experimental results or prior beliefs regarding the flooding process [40, 41]. A software 

package for extreme value analysis written in Matlab [42] was used to derive the parameters 

for the stationary GEV for the annual maximum series. The Bayesian approach is a generalized 

form of the maximum likelihood method that has been applied numerous times in extreme 

value analysis [40, 43, 44, 45]. 

 

2.3.2 Nonstationary GEV distribution models 

Nonstationary models with urbanization as covariates were fitted to the extreme 

streamflow variables using the above-mentioned extreme value analysis package used for the 

stationary model. With the extreme flood series obtained from the HEC-HMS and the single 

and multiple variable REXTN models, nonstationary GEV models were developed with 

location parameters that are linearly correlated with the urban landcover percentage of the 

watershed. 
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2.3.3 Testing for model goodness-of-fit and parsimony 

Three tests were conducted to assess and compare the stationary and nonstationary GEV 

models of the annual flood extremes in the urban watersheds. The Kolmogorov-Smirnov (K-

S) test is used to compare if two samples belong to the same distribution. This test serves to 

confirm if a distribution fits the GEV model. In the Bayesian approach, the simulation is set to 

generate 6000 realizations, thus the reported results of the K-S test in this study reflects not the 

test statistic value but instead the rejection rate of the tests for all the generated simulation 

results [42]. The rejection rate reflects the portion of the output of the simulations wherein the 

null hypothesis of the K-S test has been rejected. Thus, a lower K-S rejection rate value 

indicates that a greater portion of the simulation output fits the GEV model.  The AIC and BIC 

are popular selection criteria for model fit and parsimony [46] in hydrologic modelling. The 

AIC and BIC were used to select between the competing stationary and nonstationary GEV 

models of the various urbanization scenarios of the HEC-HMS models and the univariate and 

multivariate REXTN models that best fit the annual flood maxima of the urban watersheds. 

For both AIC and BIC, the model with the lowest value is selected as the best among competing 

models. The difference in value however should be significant (>2) for an AIC or BIC rating 

to be considered superior among competing models. 

 

2.4 Frequency modeling and comparison between stationary and nonstationary conditions 

The flood magnitude for any return period m is obtained by plugging-in the obtained 

parameter estimates into the inverse GEV function with 1 −
1

𝑚
 as the probability value; or 

alternatively using the original form of the GEV function equated to 1 −
1

𝑚
 [47].  

 

 

III. RESULTS AND DISCUSSION 

3.1 Historical streamflow and trends in annual extreme flows 

3.1.1 Simulated historical streamflow 

 

 

 
a 

 

 
b 
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c 

 
d 

 

 
e 

 

 
f 

Figure 4. HEC-HMS (a-d) and REXTN (e-f) continuous streamflow simulation outputs 

 

 

The daily streamflow output, covering the period 1951 to 2019, of the HEC-HMS models 

and REXTN models are shown in Figure 4. HEC-HMS Models with Nash-Sutcliffe Efficiency 

(NSE) of 0.339, mean absolute error of 0.2, and root mean square error (RMSE) of 0.3 were 

developed to generate the historical streamflow for the urbanization scenarios where the % 

impervious area is being updated every 5 years (a) as well as for scenarios where the % 

impervious area is not changing for the course of the simulation period (b-d). The evaluation 

metrics, except for the NSE, show that the model performs very good [48] in simulating the 

long-term flow of the watershed. The best realization from an ensemble of 100 simulation runs 

with rainfall and urbanization as predictor variables (e) and rainfall only as predictor variable 

(f) were used as the reconstructed streamflow series for the REXTN models. 

 

3.1.2 Annual maximum streamflow 

Both the deterministic and stochastic models were able to reproduce nonstationary annual 

maxima of streamflow in the urban watersheds. The HEC-HMS model with % impervious 

surface that is updated every 5 years, corresponding to the changing built-up area in the 

watersheds, was able generate nonstationary peak flow; whereas the models with non-changing 

% impervious surfaces were not able to produce peak flow variables with any significant 

trends. For the REXTN models, the multi-variable model with rainfall and urbanization as 

predictors were able to generate a high percentage of streamflow realizations with statistically 

significant increasing trends. All Legazpi subbasins produced streamflow maxima with 

increasing trends. The models that produced annual maximum flows with statistically 

significant trends are presented in Table 3. 
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Table 3. Watershed models with statistically significant maximum streamflow trends 

Watershed Model Slope [m3/s/yr] Trend 

Legazpi 1 
HEC-HMS – 5yr Urb 0.189 Increasing 

Multivariate REXTN 0.029 Increasing 

Legazpi 2 
HEC-HMS – 5yr Urb 0.069 Increasing 

Multivariate REXTN 0.028 Increasing 

Legazpi 3 
HEC-HMS – 5yr Urb 0.466 Increasing 

Multivariate REXTN 0.028 Increasing 

 

 

3.2 Stationary and nonstationary GEV distribution of annual extreme flows 

3.2.1 Parameter estimation of the distribution of streamflow extremes 

Table 4 shows the parameters of the stationary and nonstationary GEV distribution for the 

annual maximum flood of the urban watersheds from various streamflow models. The location 

parameters of the nonstationary models have linear trends, while the scale and shape 

parameters have none. The table also shows the goodness-of-fit test results for the said models.  

 

 

Table 4. Best fitting GEV models for the urban watersheds of Legazpi City 

Model Parameter Goodness of Fit 

Location Scale Shape K-S AIC BIC 

Legazpi Subbasin 1 

HEC-HMS – 5yr Urb (S) 11.36  9.06 0.18 0.84 542.5 549.2 

HEC-HMS – 5yrUrb (NS) 10.34 17.64 2.19 0.19 0.91 541.0 550.0 

HEC-HMS – 1950 (S) 10.83  9.35 0.17 1.43 543.2 549.9 

HEC-HMS – 1950 (NS) 9.60 16.71 2.22 0.18 1.64 543.2 552.2 

HEC-HMS – 1980 (S) 11.38  9.15 0.16 1.48 542.2 548.9 

HEC-HMS – 1980 (NS) 10.22 15.00 2.20 0.19 1.09 541.8 550.8 

HEC-HMS – 2020 (S) 13.41  8.69 0.21 1.51 535.9 542.6 

HEC-HMS – 2020 (NS) 11.81 16.24 2.12 0.22 2.39 535.6 544.5 

Univariate REXTN (S) 3.82  1.03 -0.19 0.31 209.3 216.0 

Univariate REXTN (NS) 5.02 3.53 0.35 -0.38 0.37 209.7 218.7 

Multivariate REXTN (S) 3.84  1.09 -0.08 1.01 226.5 233.2 

Multivariate REXTN (NS)* 8.67 2.72 0.01 -0.15 1.15 208.4 217.4 

 Legazpi Subbasin 2 

HEC-HMS – 5yr Urb (S) 3.45  2.46 0.17 2.12 359.0 365.7 

HEC-HMS – 5yrUrb (NS) 1.81 7.21 0.74 0.20 1.14 342.5 351.4 

HEC-HMS – 1950 (S) 2.81  2.36 0.19 1.67 354.5 361.2 

HEC-HMS – 1950 (NS) 2.03 3.93 0.85 0.13 1.29 353.0 361.9 

HEC-HMS – 1980 (S) 3.22  2.20 0.21 1.34 350.1 356.8 

HEC-HMS – 1980 (NS) 2.51 3.38 0.79 0.20 1.44 348.0 357.0 

HEC-HMS – 2020 (S) 5.31  2.20 0.13 1.96 341.4 348.1 

HEC-HMS – 2020 (NS) 4.64 3.34 0.76 0.17 2.21 338.4 347.4 

Univariate REXTN (S) 2.96  0.88 -0.12 0.87 195.2 201.9 
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Model Parameter Goodness of Fit 

Location Scale Shape K-S AIC BIC 

Univariate REXTN (NS) 0.94 2.70 -0.07 -0.18 1.29 197.1 206.1 

Multivariate REXTN (S) 3.32  0.96 -0.02 1.85 214.3 221.0 

Multivariate REXTN (NS)* 3.66 2.63 -0.18 0.03 0.47 195.3 204.2 

Legazpi Subbasin 3 

HEC-HMS – 5yr Urb (S) 29.60  26.41 0.16 1.28 684.6 691.3 

HEC-HMS – 5yr Urb (NS) 28.98 11.02 3.24 0.18 1.25 686.6 695.5 

HEC-HMS – 1950 (S) 29.88  25.77 0.16 2.45 684.6 691.3 

HEC-HMS – 1950 (NS) 28.91 9.83 3.25 0.15 2.58 686.5 695.5 

HEC-HMS – 1980 (S) 29.88  25.88 0.17 1.02 685.0 691.7 

HEC-HMS – 1980 (NS) 29.40 10.78 3.25 0.16 2.07 686.6 695.5 

HEC-HMS – 2020 (S) 30.28  25.62 0.16 1.54 684.7 691.4 

HEC-HMS – 2020 (NS) 30.59 8.58 3.26 0.16 1.16 686.7 695.6 

Univariate REXTN (S)* 8.39  1.02 -0.28 0.42 199.6 206.3 

Univariate REXTN (NS) 20.39 8.26 -0.07 -0.32 0.62 200.1 209.0 

Multivariate REXTN (S) 8.89  0.92 -0.11 0.70 200.5 207.2 

Multivariate REXTN (NS) 20.58 8.56 0.19 -0.16 0.49 214.9 223.9 

(S) – Stationary GEV model 

(NS) – Nonstationary GEV model 

* Best fitting model 

 

 

The column for Kolmogorov-Smirnov (K-S) test indicates the rejection rate of the 

simulation runs; i.e. the proportion of the runs that fit a GEV distribution according to the K-

S test. These results demonstrate the appropriateness of taking into consideration 

nonstationarity in flood modelling of watersheds that are dynamically evolving due to climatic 

and/or anthropogenic influences. The nonstationary GEV distribution is more appropriate than 

their stationary counterparts for both physical (Semi-decadal updating HEC-HMS) and 

stochastic (Multivariate REXTN) flow models that incorporate the effect of shifting landcover, 

and where the rate of landcover change has attained a certain threshold of significance. The 

model efficiencies for watersheds where a significant trend in urban area increase is significant 

have been improved with the nonstationary GEV models. The stationary model is more 

appropriate for models with static urbanization scenarios. 

 

It should be noted that a significant landcover change alone does not entail a better 

nonstationary model fit. Among the watersheds, Legazpi subbasin 3 has a comparatively low 

rate of urbanization, in terms of the modelled increase in built-up area within the watershed. 

Likewise, the proportion of urban areas in this subbasin relative to other landcover types is 

lower compared to the other two Legazpi subbasins. In this case, the stationary model is a 

better fit than its nonstationary counterpart. 

 

3.2.3 Frequency variation under nonstationarity 

Figure 5 shows the nonstationary return periods vis-à-vis their stationary counterparts from 

the HEC-HMS and REXTN models. The diagonal dashed lines across the graphs indicate a 



 

88 

Virgil B. Bilaro and Guillermo Q. Tabios III Phil. Eng’g J. 2024; 45(2): 72-93 

one-to-one correspondence between the return periods of flood of certain magnitude in both 

stationary and nonstationary model scenarios. Thus, the degree of deviation of a certain 

scenario curve indicates the disparity between the stationary and nonstationary return periods 

for each model scenario. A curve deviating upward indicates that the nonstationary model is 

predicting longer return periods (less frequent occurrence) than the stationary model; while a 

downward deviating curve indicates that the nonstationary model is predicting shorter return 

periods (more frequent occurrence) than the stationary model. Generally, the models that 

integrate the influence of built-up land cover expansion over time (i.e. Semi-decadal updating 

HEC-HMS models and multivariate REXTN models) predicted the shortest nonstationary 

return periods. This means that nonstationary return periods are smaller in value than the 

stationary return periods, indicating that the frequency of flood events of certain magnitude are 

expected to happen more often than previously observed. 

 

The multivariate REXTN model and the HEC-HMS Semi-decadal updating urbanization 

model have the shortest nonstationary return periods in both subbasins 1 (Figure 5a) and 2 

(Figure 5b). Meanwhile, the multivariate REXTN and HEC-HMS Semi-decadal updating 

urbanization models of subbasin 3 (Figure 5c) do not vary significantly with their univariate 

and static urbanization scenario counterparts. This is consistent with the goodness-of-fit test 

results for the third subbasin; in which the stationary GEV model is the appropriate model for 

annual extreme flows. All HEC-HMS and REXTN models predict nonstationary return periods 

that are shorter than their stationary counterparts. 
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b 

 
c 

Figure 5. Variation of nonstationary T as a function of the stationary T0 

 

 

IV. CONCLUSION 

 

From the analyses of the data inputs and the subsequent development of the above-

mentioned models, the following conclusions can be drawn: 

 

Long-term continuous streamflow data can be generated for urban watersheds with limited 

observational data using deterministic and stochastic techniques with rainfall and built-up land 

cover as principal driving factors. For the deterministic models, three simulations using static 

urbanization scenarios and one simulation using a dynamically changing urbanization scheme 

were developed for each watershed. For the stochastic models, one simulation using only 
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rainfall as predictor and another simulation using both rainfall and urbanization as predictors 

were developed for each watershed. Trend analyses show that a statistically significant increase 

can be observed on the annual maximum streamflow for the models with dynamically changing 

urbanization scenarios. All static urbanization scenario simulations, for both deterministic and 

stochastic models, produced annual maximum streamflow time series that do not have 

significant trends. 

 

Stationary and nonstationary GEV models for the flood frequency of three urban 

watersheds were developed using the Bayesian approach, with all models exhibiting excellent 

goodness-of-fit based on the Kolmogorov-Smirnov test. The annual maxima of all the models 

fall within the 90% confidence interval. In terms of efficiency, the AIC and BIC metrics show 

that the nonstationary GEV model is appropriate for watersheds with significantly increasing 

urbanization trends, however, if the urban landcover is not significantly large, the stationary 

model is still more suitable. All the stochastic models performed better than the deterministic 

models in terms of their AIC and BIC values. 

 

Nonstationary models with urbanization as covariate are predicting flood extremes to be 

more frequent than the stationary models. The degree by which the nonstationary recurrence 

interval varies with the stationary recurrence interval become more pronounced for flood 

quantiles of greater magnitudes. Models that integrate a dynamically changing urban land 

cover generally have shorter flood recurrence intervals than models with static urban land 

cover. 

 

The methodologies applied in the study could be used in other urban watersheds of 

significance in the Philippines to properly assess the effect of urban development in their 

hydrologic response. In watersheds where urbanization is progressing at significant rates, the 

nonstationary framework should be employed in quantifying the frequency of floods and 

assessing the risks involved in the planning and design of critical infrastructure inside the 

watershed. In developing continuous streamflow models of watersheds, it is recommended that 

time-varying parameters be used to take into account the effect of anthropogenically induced 

changes at the watershed in cases where these factors are known to significantly affect the flow 

regime of critical water bodies inside the watershed. 
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